cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097773 Pell equation solutions (13*b(n))^2 - 170*a(n)^2 = -1 with b(n):=A097772(n), n >= 0.

Original entry on oeis.org

1, 677, 459005, 311204713, 210996336409, 143055204880589, 96991217912702933, 65759902689607707985, 44585117032336113310897, 30228643588021195217080181, 20494975767561338021067051821, 13895563341762999157088244054457
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (13*1=13;1), (8827=13*679;677), (5984693=13*460361;459005), ... give the positive integer solutions to x^2 - 170*y^2 =-1.
		

Crossrefs

Cf. A097771 for S(n, 678).
Row 13 of array A188647.

Programs

  • GAP
    a:=[1,677];; for n in [3..20] do a[n]:=678*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1,677]; [n le 2 select I[n] else 678*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    LinearRecurrence[{678, -1},{1, 677},11] (* Ray Chandler, Aug 12 2015 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-x)/(1-678*x+x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-678*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = ((-1)^n)*S(2*n, 26*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1-678*x+x^2).
a(n) = S(n, 2*339) - S(n-1, 2*339) = T(2*n+1, sqrt(170))/sqrt(170), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = 678*a(n-1) - a(n-2), n>1; a(0)=1, a(1)=677. - Philippe Deléham, Nov 18 2008

A097775 Pell equation solutions (14*a(n))^2 - 197*b(n)^2 = -1 with b(n) = A097776(n), n >= 0.

Original entry on oeis.org

1, 787, 618581, 486203879, 382155630313, 300373839222139, 236093455472970941, 185569155627915937487, 145857120230086453893841, 114643510931692324844621539, 90109653735189937241418635813, 70826073192348358979430203127479, 55669203419532074967894898239562681
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (14*1=14;1), (11018=14*787;785), (8660134=14*618581;617009), ... give the positive integer solutions to x^2 - 197*y^2 =-1.
		

Crossrefs

Cf. A097774 for S(n, 2*393).
Cf. similar sequences of the type (1/k)*sinh((2*n + 1)*arcsinh(k)): A002315 (k=1), A049629 (k=2), A097314 (k=3), A078989 (k=4), A097726 (k=5), A097729 (k=6), A097732 (k=7), A097735 (k=8), A097738 (k=9), A097741 (k=10), A097766 (k=11), A097769 (k=12), A097772 (k=13), this sequence (k=14).

Programs

  • Mathematica
    LinearRecurrence[{786, -1}, {1, 787}, 20] (* Harvey P. Dale, Dec 12 2017 *)
  • PARI
    Vec((1+x)/(1-2*393*x+x^2) + O(x^100)) \\ Colin Barker, Apr 04 2015

Formula

G.f.: (1 + x)/(1 - 2*393*x + x^2).
a(n) = S(n, 2*393) + S(n-1, 2*393) = S(2*n, 2*sqrt(197)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) = 0 = U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 14*i)/(14*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 786*a(n-1) - a(n-2) for n > 1; a(0)=1, a(1)=787. - Philippe Deléham, Nov 18 2008
a(n) = (1/14)*sinh((2*n + 1)*arcsinh(14)). - Bruno Berselli, Apr 05 2018

A097771 Chebyshev U(n,x) polynomial evaluated at x=339=2*13^2+1.

Original entry on oeis.org

1, 678, 459683, 311664396, 211308000805, 143266512881394, 97134484425584327, 65857037174033292312, 44650974069510146603209, 30273294562090705363683390, 20525249062123428726430735211
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

Used to form integer solutions of Pell equation a^2 - 170*b^2 =-1. See A097772 with A097773.

Programs

  • Mathematica
    LinearRecurrence[{678, -1},{1, 678},11] (* Ray Chandler, Aug 12 2015 *)

Formula

a(n) = 2*339*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.
a(n) = S(n, 2*339)= U(n, 339), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-2*339*x+x^2).
a(n)= sum((-1)^k*binomial(n-k, k)*678^(n-2*k), k=0..floor(n/2)), n>=0.
a(n) = ((339+26*sqrt(170))^(n+1) - (339-26*sqrt(170))^(n+1))/(52*sqrt(170)), n>=0.
Showing 1-3 of 3 results.