cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097778 Chebyshev polynomials S(n,23) with Diophantine property.

Original entry on oeis.org

1, 23, 528, 12121, 278255, 6387744, 146639857, 3366328967, 77278926384, 1774048977865, 40725847564511, 934920445005888, 21462444387570913, 492701300469125111, 11310667466402306640, 259652650426783927609
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

All positive integer solutions of Pell equation b(n)^2 - 525*a(n)^2 = +4 together with b(n)=A090731(n+1), n>=0. Note that D=525=21*5^2 is not squarefree.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 23's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,22}. - Milan Janjic, Jan 25 2015

Examples

			(x,y) = (23;1), (527;23), (12098;528), ... give the positive integer solutions to x^2 - 21*(5*y)^2 =+4.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{23,-1},{1,23},20] (* Harvey P. Dale, May 06 2016 *)
  • Sage
    [lucas_number1(n,23,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008

Formula

a(n) = S(n, 23) = U(n, 23/2) = S(2*n+1, 5)/5 with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x). S(n, 5) = A004254(n+1).
a(n) = 23*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=23; a(-1)=0.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap := (23+5*sqrt(21))/2 and am := (23-5*sqrt(21))/2.
G.f.: 1/(1-23*x+x^2).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*22^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/21*(21 + 5*sqrt(21)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/46*(21 + 5*sqrt(21)). - Peter Bala, Dec 23 2012