A097778 Chebyshev polynomials S(n,23) with Diophantine property.
1, 23, 528, 12121, 278255, 6387744, 146639857, 3366328967, 77278926384, 1774048977865, 40725847564511, 934920445005888, 21462444387570913, 492701300469125111, 11310667466402306640, 259652650426783927609
Offset: 0
Examples
(x,y) = (23;1), (527;23), (12098;528), ... give the positive integer solutions to x^2 - 21*(5*y)^2 =+4.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..733
- R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences relate d to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (23,-1).
Programs
-
Mathematica
LinearRecurrence[{23,-1},{1,23},20] (* Harvey P. Dale, May 06 2016 *)
-
Sage
[lucas_number1(n,23,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = S(n, 23) = U(n, 23/2) = S(2*n+1, 5)/5 with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x). S(n, 5) = A004254(n+1).
a(n) = 23*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=23; a(-1)=0.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap := (23+5*sqrt(21))/2 and am := (23-5*sqrt(21))/2.
G.f.: 1/(1-23*x+x^2).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*22^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/21*(21 + 5*sqrt(21)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/46*(21 + 5*sqrt(21)). - Peter Bala, Dec 23 2012
Comments