cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097782 Chebyshev polynomials S(n,29) with Diophantine property.

Original entry on oeis.org

1, 29, 840, 24331, 704759, 20413680, 591291961, 17127053189, 496093250520, 14369577211891, 416221645894319, 12056058153723360, 349209464812083121, 10115018421396687149, 292986324755691844200, 8486488399493666794651
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

All positive integer solutions of Pell equation b(n)^2 - 837*a(n)^2 = +4 together with b(n)=A090251(n+1), n >= 0. Note that D=837=93*3^2 is not squarefree.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 29's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,28}. - Milan Janjic, Jan 26 2015

Examples

			(x,y) = (29;1), (839;29), (24302,840), ..., give the positive integer solutions to x^2 - 93*(3*y)^2 =+4.
		

Crossrefs

Cf. A097781.

Programs

  • GAP
    a:=[1,29];; for n in [3..20] do a[n]:=29*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 25 2019
  • Magma
    I:=[1,29]; [n le 2 select I[n] else 29*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, May 25 2019
    
  • Mathematica
    LinearRecurrence[{29,-1},{1,29},20] (* Harvey P. Dale, Dec 14 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-29*x+x^2)) \\ G. C. Greubel, May 25 2019
    
  • Sage
    [lucas_number1(n,29,1) for n in range(1,20)] # Zerinvary Lajos, Jun 27 2008
    

Formula

a(n) = S(n, 29) = U(n, 29/2) = S(2*n+1, sqrt(31))/sqrt(31) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 29*a(n-1) - a(n-2), n >= 1; a(0)=1, a(1)=29; a(-1)=0.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (29+3*sqrt(93))/2 and am = (29-3*sqrt(93))/2.
G.f.: 1/(1-29*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*28^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/9*(9 + sqrt(93)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 3/58*(9 + sqrt(93)). - Peter Bala, Dec 23 2012