A097798 Number of partitions of n into abundant numbers.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 0, 2, 0, 4, 0, 2, 0, 0, 0, 7, 0, 2, 0, 2, 0, 8, 0, 5, 0, 2, 0, 14, 0, 4, 0, 4, 0, 14, 0, 8, 0, 5, 0, 23, 0, 9, 0, 9, 0, 26, 0, 18, 0, 9, 0, 38, 0, 16, 0, 17, 0, 46, 0, 29, 0, 19, 0, 65, 0, 32, 0
Offset: 0
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 0..10000 (a(1) through a(532) by Antti Karttunen)
- David A. Corneth, PARI program
- Eric Weisstein's World of Mathematics, Abundant Number
- Eric Weisstein's World of Mathematics, Partition
Crossrefs
Programs
-
Magma
v:=[n:n in [1..100]| SumOfDivisors(n) gt 2*n]; [#RestrictedPartitions(n,Set(v)): n in [0..100]]; // Marius A. Burtea, Aug 02 2019
-
Mathematica
n = 100; d = Select[Range[n], DivisorSigma[1, #] > 2 # &]; CoefficientList[ Series[1/Product[1 - x^d[[i]], {i, 1, Length[d]} ], {x, 0, n}], x] (* Amiram Eldar, Aug 02 2019 *)
-
PARI
abundants_up_to_reversed(n) = { my(s = Set([])); for(k=1,n,if(sigma(k)>(2*k),s = setunion([k],s))); vecsort(s, ,4); }; partitions_into(n,parts,from=1) = if(!n,1,my(k = #parts, s=0); for(i=from,k,if(parts[i]<=n, s += partitions_into(n-parts[i],parts,i))); (s)); A097798(n) = partitions_into(n,abundants_up_to_reversed(n)); \\ Antti Karttunen, Sep 06 2018
-
PARI
\\ see Corneth link
Extensions
a(0) = 1 prepended by David A. Corneth, Sep 08 2018
Comments