cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097895 Number of compositions of n with at least 1 odd and 1 even part.

Original entry on oeis.org

0, 0, 2, 3, 11, 20, 51, 99, 222, 441, 935, 1872, 3863, 7751, 15774, 31653, 63939, 128232, 257963, 517011, 1037630, 2078417, 4165647, 8340192, 16702191, 33428943, 66912446, 133891725, 267921227, 536022488, 1072395555, 2145272571, 4291442718, 8584166169
Offset: 1

Views

Author

Dubois Marcel (dubois.ml(AT)club-internet.fr), Sep 03 2004

Keywords

Examples

			n=4: 2+1+1, 1+2+1, 1+1+2. Total=3.
		

Crossrefs

Cf. A000041 (partitions), A006477 (partitions of n with at least 1 odd and 1 even part), A000009 (partitions into odd parts), A035363 (partitions into even parts); A000079 (compositions). Compositions into odd parts give Fibonacci numbers (A000045), into even parts gives 0, 1, 0, 2, 0, 4, 0, 8, 0, 16, 0, 32, 0, 64, ... (essentially A000079).
Cf. A007179.

Programs

  • Maple
    G:=x^3*(3*x-2)/((2*x-1)*(2*x^2-1)*(x^2+x-1)): Gser:=series(G,x=0,37): seq(coeff(Gser,x^n),n=1..35); # Emeric Deutsch, Feb 15 2005
    # second Maple program
    b:= proc(n, o, e) option remember; `if`(n=0, `if`(o and e, 1, 0),
          add(`if`(irem(i, 2)=1, b(n-i, true, e),
                                 b(n-i, o, true)), i=1..n))
        end:
    a:= n-> b(n, false$2):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 11 2013
  • Mathematica
    e=(1-x^2)/(1-2x^2); o=(1-x^2)/(1-x-x^2); nn=30; Drop[CoefficientList[Series[(1-x)/(1-2x)-(o+e), {x,0,nn}], x], 1]  (* Geoffrey Critzer, Jan 18 2012 *)

Formula

G.f.: x^3*(3*x-2)/((2*x-1)*(2*x^2-1)*(x^2+x-1)). - Vladeta Jovovic, Sep 03 2004
a(n) = 3*a(n-1) + a(n-2) - 8*a(n-3) + 2*a(n-4) + 4*a(n-5) for n > 5. - Jinyuan Wang, Mar 10 2020
From Gregory L. Simay, May 27 2021: (Start)
a(2*n) = 2^(2*n - 1) - 2^(n-1) - A000045(2*n).
a(2*n+1) = 2^(2*n) - A000045(2*n + 1). (End)

Extensions

More terms from Emeric Deutsch, Feb 15 2005