cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097924 a(n) = 4*a(n-1) + a(n-2), n>=2, a(0) = 2, a(1) = 7.

Original entry on oeis.org

2, 7, 30, 127, 538, 2279, 9654, 40895, 173234, 733831, 3108558, 13168063, 55780810, 236291303, 1000946022, 4240075391, 17961247586, 76085065735, 322301510526, 1365291107839, 5783465941882, 24499154875367, 103780085443350, 439619496648767, 1862258072038418
Offset: 0

Views

Author

Creighton Dement, Sep 04 2004; corrected Sep 16 2004

Keywords

Comments

Previous name was: Sequence relates numerators and denominators in the continued fraction convergents to sqrt(5).
Floretion Algebra Multiplication Program, FAMP Code: 2lesforcycseq[ ( - 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj' )*( .5'i + .5i' ) ], 2vesforcycseq = A000004.

Examples

			G.f. = 2 + 7*x + 30*x^2 + 127*x^3 + 538*x^4 + 2279*x^5 + 9654*x^6 + 40895*x^7 + ...
		

Crossrefs

Programs

  • Magma
    I:=[2,7]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    a[n_] := Expand[((2Sqrt[5] + 3)*(2 + Sqrt[5])^n + (2Sqrt[5] - 3)*(2 - Sqrt[5])^n)/(2Sqrt[5])]; Table[ a[n], {n, 0, 20}] (* Robert G. Wilson v, Sep 17 2004 *)
    a[ n_] := (3 I ChebyshevT[ n + 1, -2 I] + 4 ChebyshevT[ n, -2 I]) I^n / 5; (* Michael Somos, Feb 23 2014 *)
    a[ n_] := If[ n < 0, SeriesCoefficient[ (2 + 7 x) / (1 + 4 x - x^2), {x, 0, -n}], SeriesCoefficient[ (2 - x) / (1 - 4 x - x^2), {x, 0, n}]]; (* Michael Somos, Feb 23 2014 *)
    LinearRecurrence[{4,1}, {2,7}, 50] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {a(n) = ( 3*I*polchebyshev( n+1, 1, -2*I) + 4*polchebyshev( n, 1, -2*I)) * I^n / 5}; \\ Michael Somos, Feb 23 2014
    
  • PARI
    {a(n) = if( n<0, polcoeff( (2 + 7*x) / (1 + 4*x - x^2) + x * O(x^-n), -n), polcoeff( (2 - x) / (1 - 4*x - x^2) + x * O(x^n), n))}; \\ Michael Somos, Feb 23 2014
    

Formula

a(n) = A001077(n+1) - 2*A001076(n).
A048875(n) + A001077(n+1)/2 = a(n)/2 + A048876(n).
a(n) = ((2*sqrt(5)+3)*(2+sqrt(5))^n + (2*sqrt(5)-3)*(2-sqrt(5))^n)/(2*sqrt(5)).
a(n+1) = A001077(n+1) + A015448(n+2) - Creighton Dement, Mar 08 2005
From Philippe Deléham, Nov 20 2008: (Start)
a(n) = 4*a(n-1) + a(n-2) for n>=2, a(0)=2, a(1)=7.
G.f.: (2-x)/(1-4*x-x^2). (End)
G.f.: G(0)*(2-x)/2, where G(k) = 1 + 1/(1 - x*(8*k + 4 +x)/(x*(8*k + 8 +x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 15 2014
a(-1 - n) = -(-1)^n * A048875(n). - Michael Somos, Feb 23 2014
E.g.f.: exp(2*x)*(10*cosh(sqrt(5)*x) + 3*sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Aug 21 2025

Extensions

Edited, corrected and extended by Robert G. Wilson v, Sep 17 2004
Better name (using formula from Philippe Deléham) from Joerg Arndt, Feb 16 2014