cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097948 G.f.: -(1-3*x^2-x^3)/(1+4*x-4*x^3-x^4).

Original entry on oeis.org

-1, 4, -13, 49, -181, 676, -2521, 9409, -35113, 131044, -489061, 1825201, -6811741, 25421764, -94875313, 354079489, -1321442641, 4931691076, -18405321661, 68689595569, -256353060613, 956722646884, -3570537526921, 13325427460801, -49731172316281, 185599261804324
Offset: 0

Views

Author

N. J. A. Sloane, following a suggestion of Creighton Dement, Sep 06 2004

Keywords

Comments

This is the sequence tesseq(X) with X = .5'i + .5i' + 'ii' - .5'jj' + 1.5'kk' - 1. See A108946.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(1-3x^2-x^3)/(1+4x-4x^3-x^4),{x,0,40}],x] (* or *) LinearRecurrence[{-4,0,4,1},{-1,4,-13,49},40] (* Harvey P. Dale, Sep 06 2014 *)

Formula

a(0)=-1, a(1)=4, a(2)=-13, a(3)=49, a(n)=-4*a(n-1)+4*a(n-3)+a(n-4). - Harvey P. Dale, Sep 06 2014
a(n) = (1 - (-1)^n + 2*cos(arccos(-2)*(n+1)))/4. - Eric Simon Jacob, Aug 17 2023

Extensions

Edited by Creighton Dement, Dec 11 2009

A097949 G.f.: -(2+7*x-x^3)/(1+4*x-4*x^3-x^4).

Original entry on oeis.org

-2, 1, -4, 9, -34, 121, -452, 1681, -6274, 23409, -87364, 326041, -1216802, 4541161, -16947844, 63250209, -236052994, 880961761, -3287794052, 12270214441, -45793063714, 170902040409, -637815097924, 2380358351281, -8883618307202, 33154114877521, -123732841202884
Offset: 0

Views

Author

N. J. A. Sloane, following a suggestion of Creighton Dement, Sep 06 2004

Keywords

Comments

This is the sequence "ves(n)".

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(2+7x-x^3)/(1+4x-4x^3-x^4),{x,0,40}],x] (* or *) LinearRecurrence[{-4,0,4,1},{-2,1,-4,9},40] (* Harvey P. Dale, Aug 11 2021 *)

Formula

a(n) = -(-1)^n - (1/6)*( ( -sqrt(3) - 2 )^n + ( sqrt(3) - 2 )^n ) - 2/3. - Eric Simon Jacob, Aug 18 2023
Showing 1-2 of 2 results.