cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097948 G.f.: -(1-3*x^2-x^3)/(1+4*x-4*x^3-x^4).

Original entry on oeis.org

-1, 4, -13, 49, -181, 676, -2521, 9409, -35113, 131044, -489061, 1825201, -6811741, 25421764, -94875313, 354079489, -1321442641, 4931691076, -18405321661, 68689595569, -256353060613, 956722646884, -3570537526921, 13325427460801, -49731172316281, 185599261804324
Offset: 0

Views

Author

N. J. A. Sloane, following a suggestion of Creighton Dement, Sep 06 2004

Keywords

Comments

This is the sequence tesseq(X) with X = .5'i + .5i' + 'ii' - .5'jj' + 1.5'kk' - 1. See A108946.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(1-3x^2-x^3)/(1+4x-4x^3-x^4),{x,0,40}],x] (* or *) LinearRecurrence[{-4,0,4,1},{-1,4,-13,49},40] (* Harvey P. Dale, Sep 06 2014 *)

Formula

a(0)=-1, a(1)=4, a(2)=-13, a(3)=49, a(n)=-4*a(n-1)+4*a(n-3)+a(n-4). - Harvey P. Dale, Sep 06 2014
a(n) = (1 - (-1)^n + 2*cos(arccos(-2)*(n+1)))/4. - Eric Simon Jacob, Aug 17 2023

Extensions

Edited by Creighton Dement, Dec 11 2009

A097947 Expansion of g.f. (2+7*x+2*x^2)/((x^2-1)*(1+4*x+x^2)).

Original entry on oeis.org

-2, 1, -6, 16, -62, 225, -842, 3136, -11706, 43681, -163022, 608400, -2270582, 8473921, -31625106, 118026496, -440480882, 1643897025, -6135107222, 22896531856, -85451020206, 318907548961, -1190179175642, 4441809153600, -16577057438762, 61866420601441, -230888624967006
Offset: 0

Views

Author

N. J. A. Sloane, following a suggestion of Creighton Dement, Sep 06 2004

Keywords

Comments

One of 4 related sequences. This is the sequence "les(n)". "jes(n)" = [1, -4, 15, -56, ...] is (-1)^(n+1)*A001353(n+1), "tes(n)" is A097948 and "ves(n)" is A099949.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-4, 0, 4, 1}, {-2, 1, -6, 16}, 27] (* Robert P. P. McKone, Aug 25 2023 *)

Formula

Properties (from Creighton Dement, Sep 06 2004):
I: jes(n) + les(n) + tes(n) = ves(n)
II: All of the following are perfect squares: {les(2n+1); tes(2n+1); ves(2n+1); ves(2n+1) - jes(2n+1) - 1 = les(2n+1) + tes(2n+1) - 1; 3*les(2n+1) + 1 = 3*jes(n)^2 + 1}.
III: les(2n+1) divides ves(2n+1) - jes(2n+1) - 1 = les(2n+1) + tes(2n+1) - 1
IV: (jes(n))^2 = les(2n+1)
V: tes(2n) = A001570(n), sqrt( tes(2n+1) ) = A001075(n)
VI: sqrt( ves(2n+1) ) = A001835(n)
VII: sqrt( les(2n+1) ) = A001353(n)
VIII: les(n) + tes(n) = ves(2+n) + jes(n)
IX: lim n |jes(n+1)/jes(n)| = lim n |les(n+1)/les(n)| = lim n |tes(n+1)/tes(n)| = lim n |ves(n+1)/ves(n)| = 2 + sqrt(3)
Comment from Roland Bacher, Sep 07 2004: These 4 sequences satisfy jes(n+1)=-4*jes(n)-jes(n-1), les(n+1)=les(n-1)+jes(n), ves(n+1)=les(n-1)-jes(n-1)+tes(n-1), tes(n+1)=les(n-1)+3*jes(n), plus initial conditions for n=0, 1.
12*a(n) = -11 -9*(-1)^n -2*(-1)^n*A001075(n+1). - R. J. Mathar, May 21 2019
From Eric Simon Jacob, Aug 26 2023: (Start)
a(n) = ( ( sqrt(3) - 2 )^(n+1) + ( -sqrt(3) - 2 )^(n+1) + 9*(-1)^(n+1) - 11 )/12.
a(n) = ( 2*cosh( (n+1)*log(sqrt(3) - 2) ) + 9*(-1)^(n+1) - 11 )/12. (End)
Showing 1-2 of 2 results.