cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097974 Sum of distinct prime divisors of n which are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 5, 2, 3, 2, 0, 10, 0, 2, 3, 2, 5, 5, 0, 2, 3, 7, 0, 5, 0, 2, 8, 2, 0, 5, 7, 7, 3, 2, 0, 5, 5, 9, 3, 2, 0, 10, 0, 2, 10, 2, 5, 5, 0, 2, 3, 14, 0, 5, 0, 2, 8, 2, 7, 5, 0, 7, 3, 2, 0, 12, 5, 2, 3, 2, 0, 10, 7, 2, 3, 2, 5, 5, 0, 9, 3, 7, 0, 5, 0
Offset: 1

Views

Author

Leroy Quet, Sep 07 2004

Keywords

Examples

			2 and 3 are the distinct prime divisors of 12 and both 2 and 3 are <= square root of 12. So a(12) = 2 + 3 = 5.
		

Crossrefs

Programs

  • Haskell
    a097974 n = sum [p | p <- a027748_row n, p ^ 2 <= n]
    -- Reinhard Zumkeller, Apr 05 2012
    
  • Maple
    with(numtheory): a:=proc(n) local s,F,f,i: s:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then s:=s+F[i] else s:=s: fi od: s; end: seq(a(n),n=1..110); # Emeric Deutsch, Jan 30 2006
  • Mathematica
    Do[Print[Plus @@ Select[Select[Divisors[n], PrimeQ], #<=Sqrt[n] &]], {n, 1, 100}] (* Ryan Propper, Jul 23 2005 *)
    Table[DivisorSum[n, # &, And[PrimeQ@ #, # <= Sqrt[n]] &], {n, 103}] (* Michael De Vlieger, Sep 04 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d*isprime(d)*(d <= sqrt(n))); \\ Michel Marcus, Aug 17 2017

Formula

G.f.: Sum_{k>=1} prime(k) * x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020

Extensions

More terms from Ryan Propper, Jul 23 2005
Further terms from Emeric Deutsch, Jan 30 2006