cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A108274 Sum of the first 10^n terms in A097974. a(n) = sum_{m=1..10^n} t(m), where t(m) is the sum of the prime divisors of m that are less than or equal to sqrt(m).

Original entry on oeis.org

0, 11, 327, 7714, 184680, 4617253, 118697919, 3149768778, 85356405077, 2357169671137, 66097467843823, 1875931900135854, 53804720498131760, 1556256544987695973, 45343922927650954928, 1329347125287604758708, 39180941384720954859005
Offset: 0

Views

Author

Ryan Propper, Jul 24 2005

Keywords

Comments

Does a(n+1)/a(n) converge?

Examples

			The first 10^2 terms in A097974 sum to 327, so a(2) = 327.
		

Crossrefs

Cf. A097974.

Programs

  • Mathematica
    s = 0; k = 1; Do[s += Plus @@ Select[Select[Divisors[n], PrimeQ], #<=Sqrt[n] &]; If[n == k, Print[s]; s = 0; k *= 10], {n, 1, 10^7}]
  • PARI
    a(n) = sum(m=1, 10^n, sumdiv(m, d, d*isprime(d)*(d<=sqrt(m)))); \\ Michel Marcus, Jul 07 2014

Extensions

a(2)-a(7) and the example corrected and a(8)-a(16) from Hiroaki Yamanouchi, Jul 07 2014

A063962 Number of distinct prime divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 04 2001

Keywords

Comments

For all primes p: a(p) = 0 (not marked) and for k > 1 a(p^k) = 1.
a(1) = 0 and for n > 0 a(n) is the number of marks when applying the sieve of Eratosthenes where a stage for prime p starts at p^2.
If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence counts inferior prime divisors. - Gus Wiseman, Feb 25 2021

Examples

			a(33) = a(3*11) = 1, as 3^2 = 9 < 33 and 11^2 = 121 > 33.
From _Gus Wiseman_, Feb 25 2021: (Start)
The a(n) inferior prime divisors (columns) for selected n:
n =  3  8  24  3660  390  3570 87780
   ---------------------------------
    {}  2   2     2    2     2     2
            3     3    3     3     3
                  5    5     5     5
                      13     7     7
                            17    11
                                  19
(End)
		

Crossrefs

Zeros are at indices A008578.
The divisors are listed by A161906 and add up to A097974.
Dominates A333806 (the strictly inferior version).
The superior version is A341591.
The strictly superior version is A341642.
A001221 counts prime divisors, with sum A001414.
A033677 selects the smallest superior divisor.
A038548 counts inferior divisors.
A063538/A063539 have/lack a superior prime divisor.
A161908 lists superior divisors.
A207375 lists central divisors.
A217581 selects the greatest inferior prime divisor.
A341676 lists the unique superior prime divisors.
- Strictly Inferior: A056924, A060775, A070039, A333805, A341596, A341674.
- Strictly Superior: A056924, A140271, A238535, A341594, A341595, A341673.

Programs

  • Haskell
    a063962 n = length [p | p <- a027748_row n, p ^ 2 <= n]
    -- Reinhard Zumkeller, Apr 05 2012
  • Maple
    with(numtheory): a:=proc(n) local c,F,f,i: c:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then c:=c+1 else c:=c: fi od: c; end: seq(a(n),n=1..105); # Emeric Deutsch
  • Mathematica
    Join[{0},Table[Count[Transpose[FactorInteger[n]][[1]],?(#<=Sqrt[n]&)],{n,2,110}]] (* _Harvey P. Dale, Mar 26 2015 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[1, i]^2<=n, a++, break)); write("b063962.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009
    

Formula

G.f.: Sum_{k>=1} x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020
a(A002110(n)) = n for n > 2. - Gus Wiseman, Feb 25 2021

Extensions

Revised definition from Emeric Deutsch, Jan 31 2006

A217581 Largest prime divisor of n <= sqrt(n), 1 if n is prime or 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 5, 2, 3, 2, 1, 5, 1, 2, 3, 2, 5, 3, 1, 2, 3, 5, 1, 3, 1, 2, 5, 2, 1, 3, 7, 5, 3, 2, 1, 3, 5, 7, 3, 2, 1, 5, 1, 2, 7, 2, 5, 3, 1, 2, 3, 7, 1, 3, 1, 2, 5, 2, 7, 3, 1, 5, 3, 2, 1, 7, 5, 2, 3
Offset: 1

Views

Author

Peter Luschny, Mar 21 2013

Keywords

Comments

If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence selects the greatest inferior prime divisor of n. - Gus Wiseman, Apr 06 2021

Examples

			From _Gus Wiseman_, Apr 06 2021: (Start)
The sequence selects the greatest element (or 1 if empty) of each of the following sets of strictly superior divisors:
   1:{}     16:{2}      31:{}     46:{2}
   2:{}     17:{}       32:{2}    47:{}
   3:{}     18:{2,3}    33:{3}    48:{2,3}
   4:{2}    19:{}       34:{2}    49:{7}
   5:{}     20:{2}      35:{5}    50:{2,5}
   6:{2}    21:{3}      36:{2,3}  51:{3}
   7:{}     22:{2}      37:{}     52:{2}
   8:{2}    23:{}       38:{2}    53:{}
   9:{3}    24:{2,3}    39:{3}    54:{2,3}
  10:{2}    25:{5}      40:{2,5}  55:{5}
  11:{}     26:{2}      41:{}     56:{2,7}
  12:{2,3}  27:{3}      42:{2,3}  57:{3}
  13:{}     28:{2}      43:{}     58:{2}
  14:{2}    29:{}       44:{2}    59:{}
  15:{3}    30:{2,3,5}  45:{3,5}  60:{2,3,5}
(End)
		

Crossrefs

Cf. A033676.
Positions of first appearances are 1 and A001248.
These divisors are counted by A063962.
These divisors add up to A097974.
The smallest prime factor of the same type is A107286.
A strictly superior version is A341643.
A superior version is A341676.
A038548 counts superior (or inferior) divisors.
A048098 lists numbers without a strictly superior prime divisor.
A056924 counts strictly superior (or strictly inferior) divisors.
A063538/A063539 have/lack a superior prime divisor.
A140271 selects the smallest strictly superior divisor.
A161906 lists inferior divisors.
A207375 lists central divisors.
A341591 counts superior prime divisors.
A341642 counts strictly superior prime divisors.
A341673 lists strictly superior divisors.
- Inferior: A066839, A069288, A333749, A333750.
- Strictly Inferior: A060775, A333805, A333806, A341596, A341674.
- Strictly Superior: A238535, A341594, A341595, A341644, A341645, A341646.

Programs

  • Maple
    A217581 := n -> `if`(isprime(n) or n=1, 1, max(op(select(i->i^2<=n, numtheory[factorset](n)))));
  • Mathematica
    Table[If[n == 1 || PrimeQ[n], 1, Select[Transpose[FactorInteger[n]][[1]], # <= Sqrt[n] &][[-1]]], {n, 100}] (* T. D. Noe, Mar 25 2013 *)
  • PARI
    a(n) = {my(m=1); foreach(factor(n)[,1], d, if(d^2 <= n, m=max(m,d))); m} \\ Andrew Howroyd, Oct 11 2023

A098002 Sum of squares of distinct prime divisors p of n, where each p <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 4, 0, 4, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 25, 4, 9, 4, 0, 38, 0, 4, 9, 4, 25, 13, 0, 4, 9, 29, 0, 13, 0, 4, 34, 4, 0, 13, 49, 29, 9, 4, 0, 13, 25, 53, 9, 4, 0, 38, 0, 4, 58, 4, 25, 13, 0, 4, 9, 78, 0, 13, 0, 4, 34, 4, 49, 13, 0, 29, 9, 4, 0, 62, 25, 4, 9, 4, 0, 38, 49
Offset: 1

Views

Author

Leroy Quet, Sep 08 2004

Keywords

Examples

			2 and 3 are the distinct prime divisors of 12 and both 2 and 3 are <= sqrt(12), so a(12) = 2^2 + 3^2 = 13.
		

Crossrefs

Cf. A097974.

Programs

  • Mathematica
    ssdpd[n_]:=Total[Select[Transpose[FactorInteger[n]][[1]],#<=Sqrt[n]&]^2]; Join[{0},Array[ssdpd,90,2]] (* Harvey P. Dale, Mar 11 2013 *)
  • PARI
    a(n) = sumdiv(n, d, isprime(d)*(d^2<=n)*d^2); \\ Michel Marcus, Dec 22 2017

Formula

G.f.: Sum_{k>=1} prime(k)^2 * x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Aug 19 2021

Extensions

More terms from John W. Layman, Sep 14 2004

A333808 Sum of distinct prime divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 10, 0, 2, 3, 2, 5, 5, 0, 2, 3, 7, 0, 5, 0, 2, 8, 2, 0, 5, 0, 7, 3, 2, 0, 5, 5, 9, 3, 2, 0, 10, 0, 2, 10, 2, 5, 5, 0, 2, 3, 14, 0, 5, 0, 2, 8, 2, 7, 5, 0, 7, 3, 2, 0, 12, 5, 2, 3, 2, 0, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, # < Sqrt[n] && PrimeQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[Prime[k] x^(Prime[k] (Prime[k] + 1))/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k) * x^(prime(k)*(prime(k) + 1)) / (1 - x^prime(k)).

A333751 Sum of nonprime divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 11, 1, 1, 1, 5, 1, 7, 1, 5, 1, 1, 1, 11, 1, 1, 1, 5, 1, 7, 1, 5, 1, 1, 1, 11, 1, 1, 1, 13, 1, 7, 1, 5, 1, 1, 1, 19, 1, 1, 1, 5, 1, 7, 1, 13, 10, 1, 1, 11, 1, 1, 1, 13, 1, 16
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) convert(select(t -> not isprime(t) and t^2 <= n, numtheory:-divisors(n)),`+`) end proc:
    map(f, [$1..100]); # Robert Israel, Sep 12 2024
  • Mathematica
    Table[DivisorSum[n, # &, # <= Sqrt[n] && !PrimeQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[Boole[!PrimeQ[k]] k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d^2<=n) && !isprime(d), d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{k>=1} A018252(k) * x^(A018252(k)^2) / (1 - x^A018252(k)).

A333753 Sum of prime power divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 2, 3, 2, 0, 5, 0, 2, 3, 6, 0, 5, 0, 6, 3, 2, 0, 9, 5, 2, 3, 6, 0, 10, 0, 6, 3, 2, 5, 9, 0, 2, 3, 11, 0, 5, 0, 6, 8, 2, 0, 9, 7, 7, 3, 6, 0, 5, 5, 13, 3, 2, 0, 14, 0, 2, 10, 14, 5, 5, 0, 6, 3, 14, 0, 17, 0, 2, 8, 6, 7, 5, 0, 19, 12, 2, 0, 16, 5, 2, 3, 14, 0, 19
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,i,j,t;
      F:= ifactors(n)[2];
      t:= 0;
      for i from 1 to nops(F) do
        j:= min(F[i,2],ilog[F[i,1]^2](n));
        t:= t + (F[i,1]^j-1)*F[i,1]/(F[i,1]-1)
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 15 2023
  • Mathematica
    Table[DivisorSum[n, # &, # <= Sqrt[n] && PrimePowerQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d^2<=n) && isprimepower(d), d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{p prime, k>=1} p^k * x^(p^(2*k)) / (1 - x^(p^k)).

A333752 Sum of squarefree divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 6, 3, 4, 3, 1, 11, 1, 3, 4, 3, 6, 12, 1, 3, 4, 8, 1, 12, 1, 3, 9, 3, 1, 12, 8, 8, 4, 3, 1, 12, 6, 10, 4, 3, 1, 17, 1, 3, 11, 3, 6, 12, 1, 3, 4, 15, 1, 12, 1, 3, 9, 3, 8, 12, 1, 8, 4, 3, 1, 19, 6, 3, 4, 3, 1, 17
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, # <= Sqrt[n] && SquareFreeQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[MoebiusMu[k]^2 k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d^2<=n) && issquarefree(d), d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{k>=1} mu(k)^2 * k * x^(k^2) / (1 - x^k).

A097975 a(n) is the prime divisor of n which is >= sqrt(n), or 0 if there is no such prime divisor.

Original entry on oeis.org

0, 2, 3, 2, 5, 3, 7, 0, 3, 5, 11, 0, 13, 7, 5, 0, 17, 0, 19, 5, 7, 11, 23, 0, 5, 13, 0, 7, 29, 0, 31, 0, 11, 17, 7, 0, 37, 19, 13, 0, 41, 7, 43, 11, 0, 23, 47, 0, 7, 0, 17, 13, 53, 0, 11, 0, 19, 29, 59, 0, 61, 31, 0, 0, 13, 11, 67, 17, 23, 0, 71, 0, 73, 37, 0, 19, 11, 13, 79, 0, 0, 41, 83
Offset: 1

Views

Author

Leroy Quet, Sep 07 2004

Keywords

Comments

Sequence also is the sum of distinct prime divisors of n which are >= sqrt(n). At most one prime divisor of n is >= square root of n.

Crossrefs

Cf. A097974.

Programs

  • Mathematica
    Do[l = Select[Select[Divisors[n], PrimeQ], # >= Sqrt[n]&]; If[Length[l] == 0, Print[0], Print[l[[1]]]], {n, 1, 50}] (* Ryan Propper, Jul 24 2005 *)
    Array[Select[FactorInteger[#][[All, 1]], Function[p, p >= Sqrt@ #]] /. {{} -> {0}, {1} -> {0}} &, 83][[All, 1]] (* Michael De Vlieger, Dec 22 2017 *)
  • PARI
    a(n) = sumdiv(n, d, if (isprime(d) && (d^2 >= n), d)); \\ Michel Marcus, Dec 23 2017

Extensions

More terms from Ryan Propper, Jul 24 2005
More terms from Stefan Steinerberger, Jan 21 2006
Further terms from Diana L. Mecum, Jun 15 2007

A347159 Sum of cubes of distinct prime divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 8, 0, 8, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 35, 125, 8, 27, 8, 0, 160, 0, 8, 27, 8, 125, 35, 0, 8, 27, 133, 0, 35, 0, 8, 152, 8, 0, 35, 343, 133, 27, 8, 0, 35, 125, 351, 27, 8, 0, 160, 0, 8, 370, 8, 125, 35, 0, 8, 27, 476, 0, 35, 0, 8, 152
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^3 &, # <= Sqrt[n] && PrimeQ[#] &], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[Prime[k]^3 x^(Prime[k]^2)/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^3 * x^(prime(k)^2) / (1 - x^prime(k)).
Showing 1-10 of 12 results. Next