A097977 Smallest prime p such that p+n is the product of exactly n distinct primes.
2, 13, 67, 1151, 9277, 1616609, 1874723, 111546427, 2751478721, 862410107549, 747543645019, 3080843115635273, 1006366256282297, 2679162624135569701, 166366498382137547479, 993969333554296364249, 8302567374394710807373
Offset: 1
Examples
a(4)=1151, for example, is the first of a sequence of primes that continues with 1361, 2141, 2411, 2801, 3251, 3881, 3923, ...with the property 1151+4=3*5*7*11, 1361+4=3*5*7*13, 2141+5=3*5*11*13, 2801+4=3*5*11*17, 3251+4=3*5*7*31, 3881+4=3*5*7*37, 3923+4=3*7*11*17, ... The terms can be written a(n)=A002110(n+k)/Q-n (cf. comment) as follows: a(1)=A002110(2)/2 - 1 a(2)=A002110(3)/2 - 2 a(3)=A002110(4)/3 - 3 a(4)=A002110(5)/2 - 4 a(5)=A002110(7)/(5*11) - 5 a(6)=A002110(8)/(2*3) - 6 a(7)=A002110(9)/(7*17) - 7 a(8)=A002110(9)/2 - 8 a(9)=A002110(12)/(3*29*31) - 9 a(10)=A002110(14)/(2*5*37*41) - 10 a(11)=A002110(13)/(11*37) - 11 a(12)=A002110(16)/(2*3*41*43) - 12 a(13)=A002110(14)/13 - 13 a(14)=A002110(18)/(2*7*53*59) - 14 a(15)=A002110(18)/(3*5*47) - 15 a(16)=A002110(18)/(2*59) - 16 a(17)=A002110(20)/(17*59*67) - 17 a(18)=A002110(22)/(2*3*67*71) - 18 etc.
Programs
-
Haskell
a097977 n = head [p | p <- dropWhile (<= n) a000040_list, a001221 (p + n) == n] -- Reinhard Zumkeller, Jun 24 2015
-
Mathematica
Table[k := 1; While[Not[Length[FactorInteger[Prime[k] + n]] == n], k++ ]; Prime[k], {n, 1, 7}] (* Stefan Steinerberger, Apr 03 2006 *)
-
PARI
A097977(n,show=0,LIM=9)={ my(P=A002110(n),M); for(i=0,LIM,i && P*=prime(n+i); forvec(v=vector(i,j,[1,n+i-1]),t=P/prod(j=1,#v,prime(n+i-v[j]))-n; M && t>=M && (v[#v]+=n+i) && next; isprime(t) || next; M=t; show && print([t,i,v]),2)); M} \\ M. F. Hasler, Jan 14 2012
Extensions
2 more terms from Stefan Steinerberger, Apr 03 2006
a(8)-a(15) from Donovan Johnson, Oct 05 2010
a(16) from Donovan Johnson, Jan 14 2012
a(17)-a(20) from M. F. Hasler, Jan 14 2012
Comments