cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097979 Total number of largest parts in all compositions of n.

Original entry on oeis.org

1, 3, 6, 12, 23, 46, 91, 183, 367, 737, 1478, 2962, 5928, 11858, 23707, 47384, 94698, 189260, 378277, 756160, 1511730, 3022672, 6044472, 12088395, 24177600, 48359695, 96732370, 193495606, 387057584, 774248858, 1548754115, 3097980230, 6196797193, 12395022288
Offset: 1

Views

Author

Vladeta Jovovic, Sep 07 2004

Keywords

Comments

Also number of compositions of n+1 with unique largest part. - Vladeta Jovovic, Apr 03 2005

Crossrefs

Column k=1 of A238341.

Programs

  • Mathematica
    nn=32; Drop[CoefficientList[Series[Sum[x^j/(1 - (x - x^(j + 1))/(1 - x))^2, {j, 1, nn}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Mar 31 2014 *)
    b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_, k_] := Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]; a[0, 0] = 1; a[, 0] = 0; a[n] := a[n+1, 1]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 10 2015, after A238341 *)
  • PARI
    { b(t)=local(r);sum(k=1,t, forstep(s=t%k,t-k,k,u=(t-k-s)\k;r+=binomial(-2,s)*(-2)^(s-u)*binomial(s,u)));r }
    { a(n)=b(n)-2*b(n-1)+b(n-2) } \\ Max Alekseyev, Apr 16 2005

Formula

G.f.: (1-x)^2 * Sum_{k>=1} x^k/(1-2*x+x^(k+1))^2.
a(n) ~ 2^(n-1)/log(2). - Vaclav Kotesovec, Apr 30 2014

Extensions

More terms from Max Alekseyev, Apr 16 2005