A097979 Total number of largest parts in all compositions of n.
1, 3, 6, 12, 23, 46, 91, 183, 367, 737, 1478, 2962, 5928, 11858, 23707, 47384, 94698, 189260, 378277, 756160, 1511730, 3022672, 6044472, 12088395, 24177600, 48359695, 96732370, 193495606, 387057584, 774248858, 1548754115, 3097980230, 6196797193, 12395022288
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from Vincenzo Librandi)
Programs
-
Mathematica
nn=32; Drop[CoefficientList[Series[Sum[x^j/(1 - (x - x^(j + 1))/(1 - x))^2, {j, 1, nn}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Mar 31 2014 *) b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_, k_] := Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]; a[0, 0] = 1; a[, 0] = 0; a[n] := a[n+1, 1]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 10 2015, after A238341 *)
-
PARI
{ b(t)=local(r);sum(k=1,t, forstep(s=t%k,t-k,k,u=(t-k-s)\k;r+=binomial(-2,s)*(-2)^(s-u)*binomial(s,u)));r } { a(n)=b(n)-2*b(n-1)+b(n-2) } \\ Max Alekseyev, Apr 16 2005
Formula
G.f.: (1-x)^2 * Sum_{k>=1} x^k/(1-2*x+x^(k+1))^2.
a(n) ~ 2^(n-1)/log(2). - Vaclav Kotesovec, Apr 30 2014
Extensions
More terms from Max Alekseyev, Apr 16 2005
Comments