A098021 Positions of 0's in the zero-one sequence [nr+2r]-[nr]-[2r], where r=sqrt(2) and [ ]=floor; see A187967.
5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 63, 68, 75, 80, 87, 92, 99, 104, 109, 116, 121, 128, 133, 138, 145, 150, 157, 162, 169, 174, 179, 186, 191, 198, 203, 208, 215, 220, 227, 232, 237, 244, 249, 256, 261, 268, 273, 278, 285, 290, 297, 302, 307, 314, 319, 326
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A187967.
Programs
-
Magma
[3*n+2*Floor(n*Sqrt(2)): n in [1..60]]; // Vincenzo Librandi, Dec 17 2015
-
Mathematica
Table[7 Floor[n (Sqrt[2] - 1)] + 5 Floor[n (2 - Sqrt[2])] + 5, {n, 1000}] (* Miko Labalan, Dec 14 2015 *) Table[3*n + 2*Floor[n*Sqrt[2]], {n,1,100}] (* G. C. Greubel, Mar 27 2018 *)
-
PARI
for(n=1,100, print1(3*n + 2*floor(n*sqrt(2)), ", ")) \\ G. C. Greubel, Mar 27 2018
Formula
a(n) = 7 * floor(n * (sqrt(2) - 1)) + 5 * floor(n * (2 - sqrt(2))) + 5. - Miko Labalan, Dec 14 2015
a(n) = 3*n + 2*floor(n*sqrt(2)). - G. C. Greubel, Mar 27 2018
Extensions
Edited and extended by Robert G. Wilson v, Sep 25 2004
Entry revised by N. J. A. Sloane, Jan 30 2016
Comments