A098156 Interleave n+1 and 2n+1 and take binomial transform.
1, 2, 5, 13, 32, 76, 176, 400, 896, 1984, 4352, 9472, 20480, 44032, 94208, 200704, 425984, 901120, 1900544, 3997696, 8388608, 17563648, 36700160, 76546048, 159383552, 331350016, 687865856, 1426063360, 2952790016, 6106906624
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- David Anderson, E. S. Egge, M. Riehl, L. Ryan, R. Steinke, Y. Vaughan, Pattern Avoiding Linear Extensions of Rectangular Posets, arXiv:1605.06825 [math.CO], 2016.
- Colin Defant, Proofs of Conjectures about Pattern-Avoiding Linear Extensions, arXiv:1905.02309 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
GAP
Concatenation([1,2], List([2..40], n-> 2^(n-3)*(3*n+4))); # G. C. Greubel, May 08 2019
-
Magma
[1,2] cat [2^(n-3)*(3*n+4): n in [2..40]]; // G. C. Greubel, May 08 2019
-
Mathematica
CoefficientList[Series[(1-2x+x^2+x^3)/(1-2x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *) LinearRecurrence[{4,-4},{1,2,5,13},50] (* Harvey P. Dale, Dec 03 2023 *)
-
PARI
{a(n) = if(n==0,1, if(n==1,2, 2^(n-3)*(3*n+4)))}; \\ G. C. Greubel, May 08 2019
-
Sage
[1,2]+[2^(n-3)*(3*n+4) for n in (2..40)] # G. C. Greubel, May 08 2019
Formula
G.f.: (1-2*x+x^2+x^3)/(1-2*x)^2.
a(n) = (2 * 0^n + Sum_{k=0..n} (-1)^(n-k)*k*binomial(n,k) + 2^(n+1) + 3*n*2^(n-1) )/4.
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(n, 2*(k-j)).
a(n) = Sum_{k=0..n} Sum_{j=0..k} C(n, 2*j). - Paul Barry, Jan 13 2005
a(n) = 2^(n-3)*(3*n+4) for n>=2. - Philip B. Zhang, May 25 2016
E.g.f.: (2 + x + (2 + 3*x)*exp(2*x))/4. - Ilya Gutkovskiy, May 31 2016
Comments