cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098156 Interleave n+1 and 2n+1 and take binomial transform.

Original entry on oeis.org

1, 2, 5, 13, 32, 76, 176, 400, 896, 1984, 4352, 9472, 20480, 44032, 94208, 200704, 425984, 901120, 1900544, 3997696, 8388608, 17563648, 36700160, 76546048, 159383552, 331350016, 687865856, 1426063360, 2952790016, 6106906624
Offset: 0

Views

Author

Paul Barry, Aug 29 2004

Keywords

Comments

Binomial transform of A029579.
An elephant sequence, see A175655. For the central square 16 A[5] vectors, with decimal values between 59 and 440, lead to this sequence (without a(1)). For the corner squares these vectors lead to the companion sequence A066373 (with a leading 1 added). - Johannes W. Meijer, Aug 15 2010

Programs

  • GAP
    Concatenation([1,2], List([2..40], n-> 2^(n-3)*(3*n+4))); # G. C. Greubel, May 08 2019
  • Magma
    [1,2] cat [2^(n-3)*(3*n+4): n in [2..40]]; // G. C. Greubel, May 08 2019
    
  • Mathematica
    CoefficientList[Series[(1-2x+x^2+x^3)/(1-2x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
    LinearRecurrence[{4,-4},{1,2,5,13},50] (* Harvey P. Dale, Dec 03 2023 *)
  • PARI
    {a(n) = if(n==0,1, if(n==1,2, 2^(n-3)*(3*n+4)))}; \\ G. C. Greubel, May 08 2019
    
  • Sage
    [1,2]+[2^(n-3)*(3*n+4) for n in (2..40)] # G. C. Greubel, May 08 2019
    

Formula

G.f.: (1-2*x+x^2+x^3)/(1-2*x)^2.
a(n) = (2 * 0^n + Sum_{k=0..n} (-1)^(n-k)*k*binomial(n,k) + 2^(n+1) + 3*n*2^(n-1) )/4.
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(n, 2*(k-j)).
a(n) = Sum_{k=0..n} Sum_{j=0..k} C(n, 2*j). - Paul Barry, Jan 13 2005
a(n) = 2^(n-3)*(3*n+4) for n>=2. - Philip B. Zhang, May 25 2016
E.g.f.: (2 + x + (2 + 3*x)*exp(2*x))/4. - Ilya Gutkovskiy, May 31 2016