A098178 Expansion of (1+x)(1-x+x^2)/((1-x)(1+x^2)).
1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1, -1, 1).
Programs
-
Magma
[1] cat &cat [[1, 0, 1, 2]^^30]; // Wesley Ivan Hurt, Jul 07 2016
-
Maple
with(numtheory); A098178:=n->signum(n)-1+sqrt((n-2)^2 mod 8); seq(A098178(n), n=0..100); # Wesley Ivan Hurt, Jan 04 2014
-
Mathematica
CoefficientList[Series[(1+x)(1-x+x^2)/((1-x)(1+x^2)),{x,0,120}],x] (* or *) PadRight[{1},120,{2,1,0,1}] (* Harvey P. Dale, May 01 2013 *) Table[Sign[n] - 1 + Sqrt[Mod[(n - 2)^2, 8]], {n, 0, 100}] (* Wesley Ivan Hurt, Jan 04 2014 *) Join[{1},LinearRecurrence[{1, -1, 1},{1, 0, 1},104]] (* Ray Chandler, Sep 03 2015 *)
Formula
G.f.: (1+x)(1-x+x^2)/((1-x)(1+x^2)).
a(n) = 1 + cos(Pi*n/2) - 0^n.
a(n) = a(n-1) - a(n-2) + a(n-3) for n>2.
a(n) = A007877(n+2), n>0. Dirichlet g.f. (1-1/2^s+2/4^s)*zeta(s). - R. J. Mathar, Feb 24 2011
a(n) = sign(n) - 1 + sqrt((n-2)^2 mod 8). - Wesley Ivan Hurt, Jan 04 2014
a(n) = a(n-4) for n>4. - Wesley Ivan Hurt, Jul 07 2016
E.g.f.: exp(x) + cos(x) - 1. - Ilya Gutkovskiy, Jul 07 2016
Comments