A098294 a(n) = ceiling(n*log_2(3/2)).
0, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 39, 39, 40, 40, 41, 41, 42, 43, 43, 44
Offset: 0
Examples
a(0) = 0 because 2^0 = 1 = (3/2)^0 but 2^(-1) = 1/2 < 1. a(11) = 7 because 2^7 = 128 > 86.497... = (3/2)^11 but 2^6 = 64 < (3/2)^11.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Sonic Studio, Pythagorean Scale.
- Eric Weisstein's World of Music, Pythagorean Scale
- Wikipedia, Pythagorean tuning
- Mike Winkler, On the structure and the behaviour of Collatz 3n + 1 sequences, 2014.
Programs
-
Haskell
import Data.List (elemIndex); import Data.Maybe (fromJust) a098294 0 = 0 a098294 n = fromJust (a001047 n `elemIndex` a227048_row n) + 1 -- Reinhard Zumkeller, Jun 30 2013
-
Magma
[0] cat [Floor(1 + n * Log(3)/Log(2)) - n: n in [1..70]]; // Vincenzo Librandi, Jul 13 2015
-
Maple
seq(ceil(n*log[2](3/2)),n=0..100); # Robert Israel, Jul 12 2015
-
Mathematica
With[{c=Log2[3/2]},Ceiling[c*Range[0,80]]] (* Harvey P. Dale, Feb 24 2024 *)
-
PARI
a(n)=ceil(n*log(3/2)/log(2)) \\ Charles R Greathouse IV, Jul 13 2015
-
PARI
a(n) = !!n + logint(3^n, 2) - n \\ Ruud H.G. van Tol, Nov 21 2023
Formula
2^a(n) >= (3/2)^n but 2^(a(n) - 1) < (3/2)^n, n >= 0.
a(n) = ceiling(tau*n) with tau := log(3)/log(2) - 1 = 0.584962501..., n >= 0.
a(n) = floor(1 + n * log(3)/log(2)) - n, n >= 1. - Mike Winkler, Dec 31 2010
Comments