cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098335 Expansion of 1/sqrt(1-4x+8x^2).

Original entry on oeis.org

1, 2, 2, -4, -26, -68, -76, 184, 1222, 3308, 3772, -9656, -64676, -177448, -203992, 536176, 3607622, 9968972, 11510636, -30723416, -207302156, -575382392, -666187432, 1796105744, 12142184476, 33803271032
Offset: 0

Views

Author

Paul Barry, Sep 03 2004

Keywords

Comments

Central coefficients of (1+2x-x^2)^n. Binomial transform of A098331.
Diagonal of rational function 1/(1 - (x^2 + 2*x*y - y^2)). - Gheorghe Coserea, Aug 04 2018

Programs

Formula

From Paul Barry, Sep 08 2004: (Start)
E.g.f. : exp(2*x)*BesselI(0, 2*I*x), I=sqrt(-1);
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(n-k,k)*2^n*(-4)^(-k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(2(n-k),k)*(-2)^k. (End)
E.g.f. : exp(2*x)*BesselJ(0, 2*x). - Sergei N. Gladkovskii, Aug 22 2012
It appears that a(j+2) = (2*(2*j+1)*a(j+1))/(j+1)-(8*j*a(j))/(j+1), in case of re-indexing from 0 to 1. - Alexander R. Povolotsky, Aug 22 2012
D-finite with recurrence: a(n+2) = ((4*n+6)*a(n+1) - 8*(n+1)*a(n))/(n+2); a(0)=1,a(1)=2. - Sergei N. Gladkovskii, Aug 22 2012