cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340221 Constant whose decimal expansion is the concatenation of the smallest n-digit semiprime A098449(n), for n = 1, 2, 3, ...

Original entry on oeis.org

4, 1, 0, 1, 0, 6, 1, 0, 0, 3, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

M. F. Hasler, Jan 01 2021

Keywords

Comments

The terms of sequence A215647 converge to this sequence of digits, and to this constant, up to powers of 10.

Examples

			The smallest prime with 1, 2, 3, 4, ... digits is, respectively, 2, 11, 101, 1009, .... Here we list the sequence of digits of these numbers: 2: 1, 1; 1, 0, 1; 1, 0, 0, 9; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.2111011009...
		

Crossrefs

Cf. A098449 (smallest n-digit semiprime), A215647 (has this as "limit"), A340206 (same for squares, limit of A215689), A340207 (similar, with largest n-digit squares, limit of A339978), A340208 (same for cubes, limit of A215692), A340209 (same with largest n-digit cube, limit of A340115), A340219 (same for primes, limit of A215641).
Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant).

Programs

  • PARI
    concat([digits(A098449(k))|k<-[1..14]]) \\ as seq. of digits
    c(N=20)=sum(k=1,N,.1^(k*(k+1)/2)*A098449(k)) \\ as constant

Formula

c = 0.410106100310001100001100000110000001100000001100000000610000000003...
= Sum_{k >= 1} 10^(-k(k+1)/2)*A098449(k)
a(-n(n+1)/2) = 1 for all n >= 2, followed by increasingly more zeros.

A098450 Largest n-digit semiprime.

Original entry on oeis.org

9, 95, 998, 9998, 99998, 999997, 9999998, 99999997, 999999991, 9999999997, 99999999997, 999999999997, 9999999999989, 99999999999997, 999999999999998, 9999999999999994, 99999999999999989, 999999999999999993, 9999999999999999991, 99999999999999999983
Offset: 1

Views

Author

Rick L. Shepherd, Sep 07 2004

Keywords

Crossrefs

Cf. A098449 (smallest n-digit semiprime), A003618 (largest n-digit prime), A001358 (semiprimes), A119320.

Programs

  • Mathematica
    NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := NextSemiPrime[10^n, -1]; Array[f, 18] (* Robert G. Wilson v, Dec 18 2012 *)
  • PARI
    apply( A098450(n)={n=10^n;until(bigomega(n-=1)==2,);n}, [1..20]) \\ M. F. Hasler, Jan 01 2021
    
  • Python
    from sympy import factorint
    def semiprime(n): f = factorint(n); return sum(f[p] for p in f) == 2
    def a(n):
      an = 10**n - 1
      while not semiprime(an): an -= 1
      return an
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Apr 10 2021

Formula

a(n) = 10^n - A119320(n). - Amiram Eldar, Sep 18 2021

A180922 Smallest n-digit number that is divisible by exactly 3 primes (counted with multiplicity).

Original entry on oeis.org

8, 12, 102, 1001, 10002, 100006, 1000002, 10000005, 100000006, 1000000003, 10000000001, 100000000006, 1000000000001, 10000000000001, 100000000000018, 1000000000000002, 10000000000000006, 100000000000000007, 1000000000000000001, 10000000000000000007
Offset: 1

Views

Author

Jonathan Vos Post, Jan 23 2011

Keywords

Comments

This is to 3 as smallest n-digit semiprime A098449 is to 2, and as smallest n-digit prime A003617 is to 1. Smallest n-digit triprime. Smallest n-digit 3-almost prime.

Examples

			a(1) = 8 because 8=2^3 is the smallest (only) 1-digit number divisible by exactly 3 primes (counted with multiplicity).
a(2) = 12 because 12 = 2^2 * 3 is the smallest of the (21) 2-digit numbers divisible by exactly 3 primes (counted with multiplicity).
a(3) = 102 because 102 = 2 * 3 * 17 is the smallest 3-digit numbers divisible by exactly 3 primes (counted with multiplicity).
		

Crossrefs

Programs

  • PARI
    A180922(n)=for(n=10^(n-1),10^n-1,bigomega(n)==3&return(n)) \\ M. F. Hasler, Jan 23 2011
    
  • Python
    from sympy import factorint
    def triprimes(n): f = factorint(n); return sum(f[p] for p in f) == 3
    def a(n):
      an = max(1, 10**(n-1))
      while not triprimes(an): an += 1
      return an
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Apr 10 2021

A347818 Smallest n-digit brilliant number.

Original entry on oeis.org

4, 10, 121, 1003, 10201, 100013, 1018081, 10000043, 100140049, 1000000081, 10000600009, 100000000147, 1000006000009, 10000000000073, 100000380000361, 1000000000000003, 10000001400000049, 100000000000000831, 1000000014000000049, 10000000000000000049, 100000000380000000361
Offset: 1

Views

Author

Eric Chen, Sep 15 2021

Keywords

Comments

A brilliant number is a semiprime (products of two primes, A001358) whose two prime factors have the same number of decimal digits. For an n-digit brilliant number, the two prime factors must each have ceiling(n/2) decimal digits.
Since all brilliant numbers are semiprimes, a(n) >= A098449(n), also, a(n) = A098449(n) for n = 1, 2, 4, 16, 78, ..., are there infinitely many n such that a(n) = A098449(n)?

Examples

			a(6) =    100013 =   103 * 971.
a(7) =   1018081 =  1009 * 1009.
a(8) =  10000043 =  2089 * 4787.
a(9) = 100140049 = 10007 * 10007.
		

Crossrefs

Programs

  • Mathematica
    Join[{4,10},Table[Module[{k=1},While[PrimeOmega[10^n+k]!=2||Length[ Union[ IntegerLength/@ FactorInteger[ 10^n+k][[;;,1]]]]!=1,k+=2];10^n+k],{n,2,20}]] (* Harvey P. Dale, Jan 09 2024 *)
  • PARI
    isA078972(n)=my(f=factor(n)); (#f[, 1]==1 && f[1, 2]==2) || (#f[, 1]==2 && f[1, 2]==1 && f[2, 2]==1 && #Str(f[1, 1])==#Str(f[2, 1]))
    A084476(n)=for(k=0,10^n,if(isA078972(10^(2*n-1)+k),return(k)))
    a(n)=if(n%2,nextprime(10^((n-1)/2))^2,10^(n-1)+A084476(n/2)) \\ after Charles R Greathouse IV in A078972

Formula

a(n) = 10^(n-1) + A083289(n).
a(2*n) = 10^(2*n-1) + A084476(n).
a(2*n+1) = A003617(n+1)^2.
a(n) >= A098449(n).
Showing 1-4 of 4 results.