A182675 a(n) is the smallest n-digit number with exactly 8 divisors, a(n) = 0 if no such number exists.
0, 24, 102, 1001, 10002, 100006, 1000002, 10000005, 100000006, 1000000003, 10000000001, 100000000006, 1000000000001, 10000000000001, 100000000000018, 1000000000000002, 10000000000000006, 100000000000000007, 1000000000000000001, 10000000000000000007, 100000000000000000003
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..100
Programs
-
Maple
with (numtheory): a:= proc(n) local k; if n<2 then 0 else for k from 10^(n-1) while tau(k)<>8 do od; k fi end: seq (a(n), n=1..20);
-
PARI
a(n) = for(k = 10^(n-1), 10^n-1, if(numdiv(k)==8, return(k))); 0; \\ Amiram Eldar, Apr 09 2024
Formula
a(n) = min {10^(n-1) <= k < 10^n : A000005(k)=8} if set is nonempty, else a(n) = 0.
Extensions
Edited by Alois P. Heinz, Nov 27 2010
a(20)-a(21) from Amiram Eldar, Apr 09 2024
Comments