A098479 Expansion of 1/sqrt((1-x)^2 - 4*x^3).
1, 1, 1, 3, 7, 13, 27, 61, 133, 287, 633, 1407, 3121, 6943, 15517, 34755, 77959, 175213, 394499, 889461, 2007963, 4538485, 10269247, 23258881, 52726599, 119627977, 271624315, 617180533, 1403272799, 3192557561, 7267485523, 16552454205, 37718893317, 85992506271
Offset: 0
Examples
From _Joerg Arndt_, Jul 01 2011: (Start) The triangle of lattice paths from (0,0) to (n,k) using steps (1,2), (2,1), (1,1) begins 1; 0, 1; 0, 1, 1; 0, 0, 2, 3; 0, 0, 1, 3, 7; 0, 0, 0, 3, 7, 13; 0, 0, 0, 1, 6, 17, 27; 0, 0, 0, 0, 4, 14, 36, 61; The triangle of lattice paths from (0,0) to (n,k) using steps (3,0), (0,3), (1,1) begins 1; 0, 1; 0, 0, 1; 1, 0, 0, 3; 0, 2, 0, 0, 7; 0, 0, 3, 0, 0, 13; 1, 0, 0, 7, 0, 0, 27; 0, 3, 0, 0, 17, 0, 0, 61; The diagonals of both appear to be this sequence. (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2749
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- J. Cigler, Some nice Hankel determinants, arXiv preprint arXiv:1109.1449 [math.CO], 2011.
- Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Steffen Eger, The Combinatorics of Weighted Vector Compositions, arXiv:1704.04964 [math.CO], 2017.
Programs
-
Mathematica
a[n_] := Sum[ Binomial[n-k, k]*Binomial[n-2k, k], {k, 0, n/2}]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jan 07 2013, from 1st formula *) CoefficientList[Series[1/Sqrt[(1-x)^2-4x^3],{x,0,40}],x] (* Harvey P. Dale, Aug 13 2024 *)
-
PARI
/* as lattice paths, assuming the first comment is true */ /* same as in A092566 but use either of the following */ steps=[[3,0], [0,3], [1,1]]; steps=[[1,1], [1,2], [2,1]]; /* Joerg Arndt, Jul 01 2011 */
-
Python
from sympy import binomial def a(n): return sum(binomial(n - k, k) * binomial(n - 2*k, k) for k in range(n//2 + 1)) print([a(n) for n in range(31)]) # Indranil Ghosh, Apr 18 2017
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*binomial(n-2*k, k).
D-finite with recurrence: n*a(n) + (-2*n+1)*a(n-1) + (n-1)*a(n-2) + 2*(-2*n+3)*a(n-3) = 0. - R. J. Mathar, Nov 30 2012
G.f.: 1/(1 - x - 2*x^3/(1 - x - x^3/(1 - x - x^3/(1 - x - x^3/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2021
a(n) ~ 1 / (sqrt((1-r)*(3-r)) * sqrt(Pi*n) * r^n), where r = 0.432040800333095... is the real root of the equation -1 + 2*r - r^2 + 4*r^3 = 0. - Vaclav Kotesovec, Jun 05 2022
Comments