cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A376792 Expansion of 1/sqrt((1 - x^4)^2 - 4*x).

Original entry on oeis.org

1, 2, 6, 20, 71, 258, 954, 3572, 13501, 51404, 196858, 757472, 2926097, 11341032, 44080770, 171755976, 670664951, 2623732322, 10281616176, 40350944112, 158573538071, 623930435834, 2457658576132, 9690467310480, 38244489565051, 151064227161784, 597165099484632
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Comments

From Seiichi Manyama, Apr 30 2025: (Start)
Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,1),(4,4).
Diagonal of the rational function 1 / (1 - x - y - x^4*y^4). (End)

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-x^4)^2-4*x))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*n-7*k, k)*binomial(2*n-8*k, n-4*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(2*n-7*k,k) * binomial(2*n-8*k,n-4*k).

A098483 Expansion of 1/sqrt((1-x)^2-8x^4).

Original entry on oeis.org

1, 1, 1, 1, 5, 13, 25, 41, 85, 205, 473, 985, 2021, 4365, 9785, 21673, 46965, 101581, 222745, 492665, 1087237, 2388749, 5251065, 11587529, 25633045, 56697933, 125345113, 277283353, 614212133, 1361824525, 3020426681, 6700678377
Offset: 0

Views

Author

Paul Barry, Sep 10 2004

Keywords

Comments

1/sqrt((1-x)^2-4rx^4) expands to sum{k=0..floor(n/2), binomial(n-2k,k)binomial(n-3k,k)r^k}

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-x)^2-8*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-2*k, k)*binomial(n-3*k, k)*2^k) \\ Michel Marcus, Jul 24 2013

Formula

a(n)=sum{k=0..floor(n/2), binomial(n-2k, k)binomial(n-3k, k)2^k}.
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 8*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ (1+sqrt(1+8*sqrt(2)))^n / (sqrt(33+10*sqrt(2)-sqrt(265+596*sqrt(2))) * sqrt(Pi*n) * 2^(n-3/2)). - Vaclav Kotesovec, Jun 23 2014

A098484 Expansion of 1/sqrt((1-x)^2-12x^4).

Original entry on oeis.org

1, 1, 1, 1, 7, 19, 37, 61, 145, 397, 979, 2107, 4591, 10915, 26857, 63649, 146347, 339751, 808885, 1936717, 4588705, 10803133, 25559287, 60893551, 145231309, 345462145, 821110051, 1955736379, 4668132067, 11146642903, 26605635949
Offset: 0

Views

Author

Paul Barry, Sep 10 2004

Keywords

Comments

1/sqrt((1-x)^2-4rx^4) expands to sum{k=0..floor(n/2), binomial(n-2k,k)binomial(n-3k,k)r^k}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-x)^2-12*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)

Formula

a(n)=sum{k=0..floor(n/2), binomial(n-2k, k)binomial(n-3k, k)3^k}.
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 12*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ sqrt(3) * (1+sqrt(1+8*sqrt(3)))^n / (sqrt(49+10*sqrt(3)-sqrt(397+884*sqrt(3))) * sqrt(Pi*n) * 2^(n-1)). - Vaclav Kotesovec, Jun 23 2014

A113180 Expansion of 1/sqrt((1-2*x)^2-8*x^4).

Original entry on oeis.org

1, 2, 4, 8, 20, 56, 160, 448, 1240, 3440, 9632, 27200, 77216, 219840, 627200, 1793024, 5136480, 14743232, 42390400, 122064640, 351951232, 1015990528, 2936079360, 8493340672, 24591589120, 71262291456, 206666232832, 599778166784
Offset: 0

Views

Author

Paul Barry, Oct 16 2005

Keywords

Comments

In general, 1/sqrt((1-a*x)^2-4*b*x^4) expands to Sum_{k=0..floor(n/2)} C(n-2k,k)*C(n-3k,k)*b^k*a^(n-4k).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-2*x)^2-8*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
  • PARI
    x='x+O('x^50); Vec(1/sqrt((1-2*x)^2 - 8*x^4)) \\ G. C. Greubel, Mar 17 2017

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n-2k,k)*C(n-3k,k)*2^(n-3k).
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2) + 8*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ (1+sqrt(1+2*sqrt(2)))^n / (sqrt(6+5*sqrt(2)-sqrt(70+56*sqrt(2))) * sqrt(Pi*n)). - Vaclav Kotesovec, Jun 23 2014
Showing 1-4 of 4 results.