A098569 Row sums of the triangle of triangular binomial coefficients given by A098568.
1, 2, 5, 14, 43, 143, 510, 1936, 7775, 32869, 145665, 674338, 3251208, 16282580, 84512702, 453697993, 2514668492, 14367066833, 84489482201, 510760424832, 3170267071640, 20182121448815, 131642848217536, 878999194493046, 6003048930287115, 41899203336942661
Offset: 0
Examples
In reference to comment about s(1)s(2)...s(n) above, a(3) = 14 = |{0000, 0001, 0002, 0003, 0010, 0020, 0100, 0012, 0013, 0023, 0101, 0103, 0120, 0123}|. - _Frank Ruskey_, Apr 17 2011 From _Paul D. Hanna_, Aug 24 2025: (Start) The following array (A131338) illustrates a process that generates these numbers. Start with [1] in row n = 0. For n > 0, form row n by concatenating n 1's with the partial sums of the prior row. The row sums of row n equals a(n) for n >= 0; equivalently, the final term of row n+1 equals a(n). Continuing in this way generates all the terms of this sequence. n = 0; [1]; n = 1: [1, 1]; n = 2; [1, 1, 1, 2]; n = 3: [1, 1, 1, 1, 2, 3, 5]; n = 4: [1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 14]; n = 5: [1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 29, 43]; n = 6: [1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 37, 51, 71, 100, 143]; n = 7: [1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 35, 46, 61, 81, 108, 145, 196, 267, 367, 510]; ... (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Christian Bean, A. Claesson and H. Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv preprint arXiv:1512.03226 [math.CO], 2015-2017.
- Beáta Bényi, Toufik Mansour, and José L. Ramírez, Pattern Avoidance in Weak Ascent Sequences, arXiv:2309.06518 [math.CO], 2023.
- Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes and Sergey Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations, arXiv:0806.0666 [math.CO], 2008-2009.
- William Y. C. Chen, Alvin Y.L. Dai, Theodore Dokos, Tim Dwyer and Bruce E. Sagan, On 021-Avoiding Ascent Sequences, The Electronic Journal of Combinatorics Volume 20, Issue 1 (2013), #P76.
- CombOS - Combinatorial Object Server, Generate pattern-avoiding permutations
- Mark Dukes and Peter R. W. McNamara, Refining the bijections among ascent sequences, (2+2)-free posets, integer matrices and pattern-avoiding permutations, arXiv:1807.11505 [math.CO], 2018-2019; Journal of Combinatorial Theory (Series A), 167 (2019), 403-430.
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
- Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
- Zhicong Lin and Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672.
- Lara Pudwell, Enumeration Schemes for Pattern-Avoiding Words and Permutations, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008.
- Lara Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29.
Programs
-
Maple
A098569 := proc(n) add( binomial((k+1)*(k+2)/2+n-k-1,n-k),k=0..n) ; end proc: seq(A098569(n),n=0..40) ; # Georg Fischer, Oct 29 2023
-
Mathematica
Table[Sum[Binomial[(k+1)*(k+2)/2+n-k-1, n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 05 2015 *)
-
PARI
a(n)=sum(k=0,n,binomial((k+1)*(k+2)/2+n-k-1,n-k))
Formula
a(n) = Sum_{k=0..n} C( (k+1)*(k+2)/2 + n-k-1, n-k).
G.f: Sum_{k>=0} x^k*y^C(k+1,2) where y = 1/(1-x). - Christian Bean, Mar 25 2015
log(a(n)) ~ n*(log(n) - 2*log(log(n)) + log(2) - 1 + 4*log(log(n))/log(n) - 2*log(2)/log(n) - 2/log(n)^2). - Vaclav Kotesovec, Oct 30 2023
Extensions
Offset changed to 0 by Georg Fischer, Oct 29 2023
Comments