cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A098890 a(n) = A001652(n)*A046090(n)+1 = A098602(n)+1.

Original entry on oeis.org

1, 13, 421, 14281, 485113, 16479541, 559819261, 19017375313, 646030941361, 21946034630941, 745519146510613, 25325704946729881, 860328449042305321, 29225841562491651013, 992818284675673829101, 33726595837410418538401, 1145711440187278556476513
Offset: 0

Views

Author

Charlie Marion, Nov 03 2004

Keywords

Examples

			a(3) = 14281 = 99^2+70^2-420.
		

Crossrefs

Programs

  • PARI
    Vec(-(x^2-22*x+1)/((x-1)*(x^2-34*x+1)) + O(x^30)) \\ Colin Barker, Jul 09 2015

Formula

For n>0, a(n) = A001541(n)^2 + A001542(n)^2 - A098602(n-1).
G.f.: -(x^2-22*x+1) / ((x-1)*(x^2-34*x+1)). - Colin Barker, Jul 09 2015
a(n) = (5/8+1/16*(17+12*sqrt(2))^(-n)*(3-2*sqrt(2)+(3+2*sqrt(2))*(17+12*sqrt(2))^(2*n))). - Colin Barker, Mar 02 2016

Extensions

Name and a(0) corrected by Charlie Marion, Jul 09 2015

A097480 Positive integers n such that 2n-15 is prime.

Original entry on oeis.org

9, 10, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 34, 37, 38, 41, 43, 44, 47, 49, 52, 56, 58, 59, 61, 62, 64, 71, 73, 76, 77, 82, 83, 86, 89, 91, 94, 97, 98, 103, 104, 106, 107, 113, 119, 121, 122, 124, 127, 128, 133, 136, 139, 142, 143, 146, 148, 149, 154, 161, 163
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 19 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), this sequence (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p+15 where p is a prime greater than 2.

A098605 Positive integers n such that 2n - 17 is prime.

Original entry on oeis.org

10, 11, 12, 14, 15, 17, 18, 20, 23, 24, 27, 29, 30, 32, 35, 38, 39, 42, 44, 45, 48, 50, 53, 57, 59, 60, 62, 63, 65, 72, 74, 77, 78, 83, 84, 87, 90, 92, 95, 98, 99, 104, 105, 107, 108, 114, 120, 122, 123, 125, 128, 129, 134, 137, 140, 143, 144, 147, 149, 150, 155, 162
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 20 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), this sequence (k=17), A097932 (k=19).

Programs

Formula

Half of p+17 where p is a prime greater than 2.

A097363 Positive integers n such that 2n-13 is prime.

Original entry on oeis.org

8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 25, 27, 28, 30, 33, 36, 37, 40, 42, 43, 46, 48, 51, 55, 57, 58, 60, 61, 63, 70, 72, 75, 76, 81, 82, 85, 88, 90, 93, 96, 97, 102, 103, 105, 106, 112, 118, 120, 121, 123, 126, 127, 132, 135, 138, 141, 142, 145, 147, 148, 153, 160, 162
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 18 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), this sequence (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p+13 where p is a prime greater than 2.

A195538 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(8).

Original entry on oeis.org

5, 12, 145, 420, 4901, 14280, 166465, 485112, 5654885, 16479540, 192099601, 559819260, 6525731525, 19017375312, 221682772225, 646030941360, 7530688524101, 21946034630940, 255821727047185, 745519146510612, 8690408031080165
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for a discussion and references.
Conjecture: a(n) = 35*a(n-2) - 35*a(n-4) + a(n-6) with bisections A098602 and A076218. - R. J. Mathar, Sep 21 2011

Crossrefs

Programs

  • Mathematica
    r = Sqrt[8]; z = 24;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195538, A195539 *)
    Sqrt[a^2 + b^2] (* A195540 *)
    (* Peter J. C. Moses, Sep 02 2011 *)
Showing 1-5 of 5 results.