A098603 a(n) = n*(n+10).
0, 11, 24, 39, 56, 75, 96, 119, 144, 171, 200, 231, 264, 299, 336, 375, 416, 459, 504, 551, 600, 651, 704, 759, 816, 875, 936, 999, 1064, 1131, 1200, 1271, 1344, 1419, 1496, 1575, 1656, 1739, 1824, 1911, 2000, 2091, 2184, 2279, 2376, 2475, 2576, 2679, 2784
Offset: 0
Links
- Shawn A. Broyles, Table of n, a(n) for n = 0..1000
- Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
- Wikipedia, Hydrogen spectral series.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(n+10): n in [0..50]]; // G. C. Greubel, Jul 31 2022
-
Maple
seq(n*(n+10), n=0..53); # Emeric Deutsch, Mar 11 2005
-
Mathematica
Table[n(n+10),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,11,24},50] (* Harvey P. Dale, Jul 26 2014 *)
-
PARI
a(n)=n*(n+10) \\ Charles R Greathouse IV, Jun 16 2017
-
SageMath
[n*(n+10) for n in (0..50)] # G. C. Greubel, Jul 31 2022
Formula
a(n) = (n+5)^2 - 5^2 = n*(n+10), n>=0.
G.f.: x*(11-9*x)/(1-x)^3.
a(n) = a(n-1) + 2*n + 9, (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
Sum_{n>=1} 1/a(n) = 7381/25200 via sum_{n>=0} 1/((n+x)*(n+y)) = (psi(x)-psi(y))/(x-y). - R. J. Mathar, Jul 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=11, a(2)=24. - Harvey P. Dale, Jul 26 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = 1627/25200. - Amiram Eldar, Jan 15 2021
E.g.f.: x*(11 + x)*exp(x). - G. C. Greubel, Jul 31 2022
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -18144*sqrt(2/13)*sin(sqrt(26)*Pi)/(935*Pi).
Product_{n>=1} (1 + 1/a(n)) = 126*sqrt(6)*sin(2*sqrt(6)*Pi)/(23*Pi). (End)
Extensions
More terms from Emeric Deutsch, Mar 11 2005
Comments