cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098603 a(n) = n*(n+10).

Original entry on oeis.org

0, 11, 24, 39, 56, 75, 96, 119, 144, 171, 200, 231, 264, 299, 336, 375, 416, 459, 504, 551, 600, 651, 704, 759, 816, 875, 936, 999, 1064, 1131, 1200, 1271, 1344, 1419, 1496, 1575, 1656, 1739, 1824, 1911, 2000, 2091, 2184, 2279, 2376, 2475, 2576, 2679, 2784
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004

Keywords

Comments

These are the only positive integer values of t for which the Binet-de Moivre formula for the recurrence b(n) = 10*b(n-1)+t*b(n-2) with b(0)=0 and b(1)=1 has a root which is a square. In particular, sqrt(10^2+4*t) is a positive integer since 10^2+4*t = 10^2+4*a(m) = (2*m+10)^2. Thus the characteristic roots are r1=10+m and r2 = -m. - Felix P. Muga II, Mar 28 2014

Crossrefs

Cf. A098832.
a(n-5), n>=6, fifth column (used for the Pfund series of the hydrogen atom) of triangle A120070.

Programs

Formula

a(n) = (n+5)^2 - 5^2 = n*(n+10), n>=0.
G.f.: x*(11-9*x)/(1-x)^3.
a(n) = a(n-1) + 2*n + 9, (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
Sum_{n>=1} 1/a(n) = 7381/25200 via sum_{n>=0} 1/((n+x)*(n+y)) = (psi(x)-psi(y))/(x-y). - R. J. Mathar, Jul 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=11, a(2)=24. - Harvey P. Dale, Jul 26 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = 1627/25200. - Amiram Eldar, Jan 15 2021
E.g.f.: x*(11 + x)*exp(x). - G. C. Greubel, Jul 31 2022
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -18144*sqrt(2/13)*sin(sqrt(26)*Pi)/(935*Pi).
Product_{n>=1} (1 + 1/a(n)) = 126*sqrt(6)*sin(2*sqrt(6)*Pi)/(23*Pi). (End)

Extensions

More terms from Emeric Deutsch, Mar 11 2005