cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098615 G.f. A(x) satisfies: A(x*G(x)) = G(x), where G(x) is the g.f. for A098614(n) = Fibonacci(n+1)*Catalan(n).

Original entry on oeis.org

1, 1, 3, 5, 13, 25, 61, 125, 295, 625, 1447, 3125, 7151, 15625, 35491, 78125, 176597, 390625, 880125, 1953125, 4390901, 9765625, 21920913, 48828125, 109486993, 244140625, 547018941, 1220703125, 2733608905, 6103515625, 13662695645, 30517578125, 68294088535, 152587890625, 341399727335, 762939453125, 1706739347095, 3814697265625, 8532741458075, 19073486328125, 42660172763995, 95367431640625
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2004

Keywords

Comments

G.f. satisfies: A(x) = x/(series reversion of x*G098614(x)), where G098614 is the g.f. for A098614 = {1*1, 1*1, 2*2, 3*5, 5*14, 8*42, 13*132, ...}.
Hankel transform is 2^n. Image of F(n+1) under the Riordan array (c(x^2),xc(x^2)), c(x) the g.f. of A000108. The sequence 0,1,1,3,5,... has general term Sum_{k=0..floor(n/2)} (C(n-1,k) - C(n-1,k-1))*F(n-2k). It is the image of the Fibonacci numbers under the transform of generating functions g(x)-> g(xc(x^2)), c(x) the g.f. of A000108. This sequence has Hankel transform -(-4)^((n-1)/2)(1-(-1)^n)/2. - Paul Barry, Oct 01 2007
The sequence of fractions 1, 1/2, 3/4, 5/8, 13/16, 25/32, ... or a(n)/2^n is the image of F(n+1) under the Chebyshev related (rational) Riordan array c((x/2)^2),(x/2)c((x/2)^2)) where c(x) is the g.f. of A000108. The Hankel transform of this fraction sequence is 1/(2^(n^2)). - Paul Barry, Jun 17 2008

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (x+Sqrt(1-4*x^2))/(1-5*x^2) )); // G. C. Greubel, Jul 31 2024
    
  • Mathematica
    Array[Sum[Binomial[(# - 1)/2, (# - k)/2]*2^(# - k - 1)*((-1)^(# - k) + 1), {k, 0, #}] &, 42, 0] (* or *)
    CoefficientList[Series[(Sqrt[1 - 4 x^2] + x)/(1 - 5 x^2), {x, 0, 41}], x] (* Michael De Vlieger, May 20 2021 *)
  • Maxima
    a(n):=sum(binomial((n-1)/2,(n-k)/2)*2^(n-k-1)*((-1)^(n-k)+1),k,0,n); /* Vladimir Kruchinin, Apr 16 2011 */
    
  • PARI
    { a(n) = polcoeff((sqrt(1-4*x^2+x^2*O(x^n))+x)/(1-5*x^2),n) }
    for(n=0,50,print1(a(n),", "))
    
  • SageMath
    def A098615_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (x+sqrt(1-4*x^2))/(1-5*x^2) ).list()
    A098615_list(30) # G. C. Greubel, Jul 31 2024

Formula

G.f.: (x + sqrt(1-4*x^2)) / (1-5*x^2).
G.f. satisfies: A(x) = sqrt(1 + 2*x*A(x) + 5*x^2*A(x)^2). - Paul D. Hanna, Nov 18 2014
a(2*n) = A046748(n).
a(2*n+1) = 5^n.
a(n) = Sum_{k=0..floor((n+1)/2)} (C(n,k) - C(n,k-1))*Fibonacci(n-2k+1). - Paul Barry, Oct 01 2007
G.f.: 1/(1-x-2x^2/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-.... (continued fraction). - Paul Barry, Feb 09 2009
a(n) = Sum_{k=0..n} binomial((n-1)/2,(n-k)/2)*2^(n-k-1)*(1+(-1)^(n-k)). - Vladimir Kruchinin, Apr 16 2011
From Gary W. Adamson, Sep 22 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix as follows:
1, 1, 1, 0, 0, 0, ...
1, 0, 0, 1, 0, 0, ...
1, 0, 0, 0, 1, 0, ...
0, 1, 0, 0, 0, 1, ...
0, 0, 1, 0, 0, 0, ...
0, 0, 0, 1, 0, 0, ...
0, 0, 0, 0, 1, 0, ...
0, 0, 0, 0, 0, 1, ...
... (End)
a(n) = Sum_{k=0..floor(n/2)} A054335(n-k,n-2k). - Philippe Deléham, Feb 01 2012
a(n) = Sum_{k=0..n} A053121(n,k)*A000045(k+1). - Philippe Deléham, Feb 03 2012
n*a(n) +(n-1)*a(n-1) -3*(3*n-4)*a(n-2) -3*(3*n-7)*a(n-3) +20*(n-3)*a(n-4) +20*(n-4)*a(n-5) = 0. - R. J. Mathar, Jul 21 2017