cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098622 Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 2, 17, 250, 5465, 162677, 6241059, 297132409, 17075153860, 1159545515804, 91501467848088, 8276847825732141, 848577193578286942, 97672164219292005480, 12518933902769241287267, 1774279753092963892540493, 276351502436571180980604240, 47046745370508674770872396843
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ here R(n) is A000110 as e.g.f.
    egfA014507(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, stirling(i,k,1)*polcoef(bell, 2*k))*x^i/i!) + O(x*x^n)}
    EnrichedGdlSeq(R)={my(n=serprec(R, x)-1); Vec(serlaplace(subst(egfA014507(n), x, R-polcoef(R,0))))}
    R(n)={exp(exp(x + O(x*x^n))-1)}
    EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: exp(-1)*Sum_{n >=0} exp(n^2*(exp(x)-1))/n!. - Vladeta Jovovic, Aug 24 2006
a(n) = Sum_{k=0..n} Stirling2(n,k)*Bell(2*k). - Vladeta Jovovic, Aug 24 2006
E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000110. - Andrew Howroyd, Jan 12 2021

Extensions

More terms from Vladeta Jovovic, Aug 24 2006
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007
Terms a(16) and beyond from Andrew Howroyd, Jan 12 2021