A098622 Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled loops and arcs.
1, 2, 17, 250, 5465, 162677, 6241059, 297132409, 17075153860, 1159545515804, 91501467848088, 8276847825732141, 848577193578286942, 97672164219292005480, 12518933902769241287267, 1774279753092963892540493, 276351502436571180980604240, 47046745370508674770872396843
Offset: 0
Keywords
References
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
Programs
-
PARI
\\ here R(n) is A000110 as e.g.f. egfA014507(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, stirling(i,k,1)*polcoef(bell, 2*k))*x^i/i!) + O(x*x^n)} EnrichedGdlSeq(R)={my(n=serprec(R, x)-1); Vec(serlaplace(subst(egfA014507(n), x, R-polcoef(R,0))))} R(n)={exp(exp(x + O(x*x^n))-1)} EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
Formula
E.g.f.: exp(-1)*Sum_{n >=0} exp(n^2*(exp(x)-1))/n!. - Vladeta Jovovic, Aug 24 2006
a(n) = Sum_{k=0..n} Stirling2(n,k)*Bell(2*k). - Vladeta Jovovic, Aug 24 2006
E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000110. - Andrew Howroyd, Jan 12 2021
Extensions
More terms from Vladeta Jovovic, Aug 24 2006
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007
Terms a(16) and beyond from Andrew Howroyd, Jan 12 2021