A098694 Double-superfactorials: a(n) = Product_{k=1..n} (2k)!.
1, 2, 48, 34560, 1393459200, 5056584744960000, 2422112183371431936000000, 211155601241022491077587763200000000, 4417964278440225627098723475313498521600000000000
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..28
- C. Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
Programs
-
Magma
[&*[ Factorial(2*k): k in [0..n] ]: n in [0..10]]; // Vincenzo Librandi, Dec 11 2016
-
Mathematica
Table[Product[(2k)!,{k,1,n}],{n,0,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
-
PARI
a(n) = prod(k=1, n, (2*k)!); \\ Michel Marcus, Dec 11 2016
-
Python
from math import prod def A098694(n): return prod(((k+1)*((k<<1)+1)<<1)**(n-k) for k in range(1,n+1))<
Chai Wah Wu, Nov 26 2023
Formula
a(n) = Product_{k=0..n} (2*(k+1)*(2*k+1))^(n-k). - Paul Barry, Jan 28 2008
G.f.: G(0)/(2*x)-1/x, where G(k)= 1 + 1/(1 - 1/(1 + 1/(2*k+2)!/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
a(n) ~ 2^(n^2+2*n+17/24) * n^(n^2+3*n/2+11/24) * Pi^((n+1)/2) / (A^(1/2) * exp(3*n^2/2+3*n/2-1/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014
a(n) = A^(3/2)*2^(n^2+n-1/24)*Pi^(-n/2-1/4)*G(n+3/2)*G(n+2)/exp(1/8), where G(n) is the Barnes G-function and A is the Glaisher-Kinkelin constant. - Ilya Gutkovskiy, Dec 11 2016
For n > 0, a(n) = 2^((n+1)/2) * n * sqrt(BarnesG(2*n)*Gamma(n)) * Gamma(2*n). - Vaclav Kotesovec, Nov 27 2024
Comments