cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163087 Product{k|n} k$. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

1, 1, 2, 6, 12, 30, 240, 140, 840, 3780, 15120, 2772, 221760, 12012, 960960, 9266400, 10810800, 218790, 7351344000, 923780, 16761064320, 3259095840, 3910915008, 16224936, 41977154419200, 2028117000, 249864014400
Offset: 0

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Examples

			The set of positive divisors of 3 is {1,3}. Thus a(3) = 1$ * 3$ = 1 * 6 = 6.
		

Crossrefs

Programs

  • Maple
    a := proc(n) local i; mul(i,i=map(swing,numtheory[divisors](n))) end:
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Product[sf[k], {k, Divisors[n]}]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 26 2013 *)

A308943 a(n) = Product_{d|n} binomial(n,d).

Original entry on oeis.org

1, 2, 3, 24, 5, 1800, 7, 15680, 756, 113400, 11, 79693891200, 13, 4372368, 20495475, 44972928000, 17, 2028339316523520, 19, 52737518268864000, 3247700400, 3585005424, 23, 38135556819759802035135799296, 1328250, 87885070000, 370142004375, 10293527616645873600000, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2019

Keywords

Crossrefs

Cf. A001142, A008578 (fixed points), A056045 (similar, with Sum), A098710, A135396.
Cf. A000010 (comments on product formulas).

Programs

  • Mathematica
    Table[Product[Binomial[n, d], {d, Divisors[n]}], {n, 1, 29}]
  • PARI
    a(n) = my(p=1); fordiv(n, d, p *= binomial(n, d)); p; \\ Michel Marcus, Jul 02 2019
    
  • Python
    from math import prod, comb
    from sympy import divisors
    def A308943(n): return prod(comb(n,d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jul 22 2024

Formula

a(n) = Product_{k=1..n} binomial(n,gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} binomial(n,n/gcd(n,k))^(1/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 08 2021
Showing 1-2 of 2 results.