A110082
Numbers of the form 2^(m-1)*(4^m+2^m-1) where 4^m+2^m-1 is prime.
Original entry on oeis.org
5, 38, 284, 2168, 133088, 537394688, 140739635806208, 2361183382172302573568, 151115729703628426969088, 20282409604241966234288777068544, 45671926166590726335069952848216804538059849728
Offset: 1
2^1299*(4^1300+2^1300-1) is in the sequence because 4^1300+2^1300-1 is prime.
A172994
a(n), starting at n=4, is the smallest positive integral x with an n-th prime in {x^2k+x^k-1} occurring for k < A096594(n).
Original entry on oeis.org
2, 460724, 610357585, 2096681555, 5351622936, 66, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 4
a(9)=66 corresponds to the fact that 66^48+66^24-1 is already the 9th prime value of type x^2k+x^k-1 for x=66 (i.e., this surpasses A096594(9)=26, that 10^52+10^26-1 is the 9th prime for the case x=10).
A268212
Numbers n of the form 2^k + 1 such that n^2 - n - 1 is a prime q (for k >= 0).
Original entry on oeis.org
3, 5, 9, 17, 65, 1025, 65537, 16777217, 67108865, 34359738369, 4503599627370497, 36028797018963969, 39614081257132168796771975169, 22300745198530623141535718272648361505980417
Offset: 1
17 = 2^4 + 1 is a term because 17^2 - 17 - 1 = 271 (prime).
-
[2^n + 1: n in [0..300] | IsPrime((2^n + 1)^2 - 2^n - 2)]
-
2^# + 1 &@ Select[Range[0, 300], PrimeQ[#^2 - # - 1 &@ (2^# + 1)] &] (* Michael De Vlieger, Jan 29 2016 *)
-
lista(nn) = {for (k=0, nn, n = 2^k+1; if (isprime(n^2-n-1), print1(n, ", ")););} \\ Michel Marcus, Mar 06 2016
Showing 1-3 of 3 results.
Comments