cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098909 Triangle T(n,k) of numbers of connected (unicyclic) graphs with unique cycle of length k (3<=k<=n), on n labeled nodes.

Original entry on oeis.org

1, 12, 3, 150, 60, 12, 2160, 1080, 360, 60, 36015, 20580, 8820, 2520, 360, 688128, 430080, 215040, 80640, 20160, 2520, 14880348, 9920232, 5511240, 2449440, 816480, 181440, 20160, 360000000, 252000000, 151200000, 75600000, 30240000, 9072000
Offset: 3

Views

Author

Vladeta Jovovic, Oct 15 2004

Keywords

Examples

			Triangle begins as:
      1;
     12,     3;
    150,    60,   12;
   2160,  1080,  360,   60;
  36015, 20580, 8820, 2520, 360;
  ...
		

Crossrefs

Row sums: A057500, columns: A053507, A065889.

Programs

  • GAP
    Flat(List([3..12], n-> List([3..n], k-> Factorial(k)*Binomial(n,k) *n^(n-k-1)/2 ))); # G. C. Greubel, May 16 2019
  • Magma
    [[Factorial(k)*Binomial(n,k)*n^(n-k-1)/2: k in [3..n]]: n in [3..12]]; // G. C. Greubel, May 16 2019
    
  • Mathematica
    f[list_] := Select[list, #>0&]; t = Sum[n^(n-1)x^n/n!, {n, 1, 20}]; Map[f,Drop[Transpose[Table[Range[0,8]! CoefficientList[Series[t^n/(2n), {x, 0, 8}], x], {n, 3, 8}]], 3]] (* Geoffrey Critzer, Oct 23 2011 *)
    Table[k!*Binomial[n,k]*n^(n-k-1)/2, {n,3,12}, {k,3,n}]//Flatten (* G. C. Greubel, May 16 2019 *)
  • PARI
    {T(n,k) = k!*binomial(n,k)*n^(n-k-1)/2 }; \\ G. C. Greubel, May 16 2019
    
  • Sage
    [[factorial(k)*binomial(n,k)*n^(n-k-1)/2 for k in (3..n)] for n in (3..12)] # G. C. Greubel, May 16 2019
    

Formula

T(n, k) = (n-1)!*n^(n-k)/(2*(n-k)!).
E.g.f.: -(2*log(1+x*LambertW(-y))-2*x*LambertW(-y)+x^2*LambertW(-y)^2)/4.