A098909 Triangle T(n,k) of numbers of connected (unicyclic) graphs with unique cycle of length k (3<=k<=n), on n labeled nodes.
1, 12, 3, 150, 60, 12, 2160, 1080, 360, 60, 36015, 20580, 8820, 2520, 360, 688128, 430080, 215040, 80640, 20160, 2520, 14880348, 9920232, 5511240, 2449440, 816480, 181440, 20160, 360000000, 252000000, 151200000, 75600000, 30240000, 9072000
Offset: 3
Examples
Triangle begins as: 1; 12, 3; 150, 60, 12; 2160, 1080, 360, 60; 36015, 20580, 8820, 2520, 360; ...
Links
- G. C. Greubel, Rows n = 3..100 of triangle, flattened
Programs
-
GAP
Flat(List([3..12], n-> List([3..n], k-> Factorial(k)*Binomial(n,k) *n^(n-k-1)/2 ))); # G. C. Greubel, May 16 2019
-
Magma
[[Factorial(k)*Binomial(n,k)*n^(n-k-1)/2: k in [3..n]]: n in [3..12]]; // G. C. Greubel, May 16 2019
-
Mathematica
f[list_] := Select[list, #>0&]; t = Sum[n^(n-1)x^n/n!, {n, 1, 20}]; Map[f,Drop[Transpose[Table[Range[0,8]! CoefficientList[Series[t^n/(2n), {x, 0, 8}], x], {n, 3, 8}]], 3]] (* Geoffrey Critzer, Oct 23 2011 *) Table[k!*Binomial[n,k]*n^(n-k-1)/2, {n,3,12}, {k,3,n}]//Flatten (* G. C. Greubel, May 16 2019 *)
-
PARI
{T(n,k) = k!*binomial(n,k)*n^(n-k-1)/2 }; \\ G. C. Greubel, May 16 2019
-
Sage
[[factorial(k)*binomial(n,k)*n^(n-k-1)/2 for k in (3..n)] for n in (3..12)] # G. C. Greubel, May 16 2019
Formula
T(n, k) = (n-1)!*n^(n-k)/(2*(n-k)!).
E.g.f.: -(2*log(1+x*LambertW(-y))-2*x*LambertW(-y)+x^2*LambertW(-y)^2)/4.