cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099016 a(n) = 3*L(2*n)/5 - (-1)^n/5, where L = A000032.

Original entry on oeis.org

1, 2, 4, 11, 28, 74, 193, 506, 1324, 3467, 9076, 23762, 62209, 162866, 426388, 1116299, 2922508, 7651226, 20031169, 52442282, 137295676, 359444747, 941038564, 2463670946, 6449974273, 16886251874, 44208781348, 115740092171
Offset: 0

Views

Author

Paul Barry, Sep 22 2004

Keywords

Comments

Let M = an infinite triangle with (1,2,2,3,3,4,4,...) as the left border and all other columns = (0,1,2,3,4,5,...). Then lim_{n->infinity} M^n = A099016, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 26 2010

Crossrefs

Cf. A000032.

Programs

  • Magma
    [3*Lucas(2*n)/5-(-1)^n/5: n in [0..35]]; // Vincenzo Librandi, Jun 09 2011
    
  • Magma
    F:=Fibonacci; [F(n+1)^2+F(n)*F(n-2): n in [0..30]]; // Bruno Berselli, Feb 15 2017
    
  • Maple
    with(combinat):seq(3*fibonacci(n)^2+(-1)^n, n= 0..27)
  • Mathematica
    CoefficientList[Series[(1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2)), {x,0,50}], x] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    x='x+O('x^30); Vec((1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2))) \\ G. C. Greubel, Dec 31 2017

Formula

G.f.: (1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = 2*F(n)^2 + F(n)*F(n-1) + F(n-1)^2, where F = A000045.
a(n) = 3*((3/2 - sqrt(5)/2)^n + (3/2 + sqrt(5)/2)^n)/5 - (-1)^n/5.
a(n) = A099015(n)/F(n+1).
a(n) = 3*A005248(n)/5 - (-1)^n/5.
a(n) = 3*A000032(2*n)/5 - (-1)^n/5.
a(n) = A061646(n) + F(n)^2.
a(n) = 3*F(n)^2 + (-1)^n.
a(n) = F(n+1)^2 + F(n)*F(n-2). See also A192914, fourth formula. - Bruno Berselli, Feb 15 2017