A099022 a(n) = Sum_{k=0..n} C(n,k)*(2*n-k)!.
1, 3, 38, 1158, 65304, 5900520, 780827760, 142358474160, 34209760152960, 10478436416945280, 3984884716852972800, 1842169367191937414400, 1017403495472574045158400, 661599650478455071589606400, 500354503197888042597961267200, 435447353708763072625260119808000
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..224
- L. I. Nicolaescu, Derangements and asymptotics of the Laplace transforms of large powers of a polynomial, New York J. Math. 10 (2004) 117-131.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- P. J. Rossky, M. Karplus, The enumeration of Goldstone diagrams in many-body perturbation theory, J. Chem. Phys. 64 (1976) 1569, equation (9).
- Index entries for related partition-counting sequences
Programs
-
Maple
f:= gfun:-rectoproc({a(n)=2*n*(2*n-1)*a(n-1)+n*(n-1)*a(n-2), a(0)=1,a(1)=3},a(n),remember): map(f, [$0..20]); # Robert Israel, Feb 15 2017
-
Mathematica
Table[(2k)! Hypergeometric1F1[-k, -2k, 1], {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *) Table[Sum[Binomial[n,k](2n-k)!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Nov 22 2021 *)
-
PARI
for(n=0,25, print1(sum(k=0,n, binomial(n,k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Dec 31 2017
Formula
T(2*n, n), where T is the triangle in A076571.
a(n) = n!*A001517(n).
A082765(n) = Sum[C(n, k)*a(k), 0<=k<=n].
a(n) = 2*n*(2*n-1)*a(n-1)+n*(n-1)*a(n-2). - Vladeta Jovovic, Sep 27 2004
a(n) = int {x = 0..inf} exp(-x)*(x + x^2)^n dx. Applying the results of Nicolaescu, Section 3.2 to this integral we obtain the asymptotic expansion a(n) ~ (2*n)!*exp(1/2)*( 1 - 1/(16*n) - 191/(6144*n^2) + O(1/n^3) ). - Peter Bala, Jul 07 2014
Comments