A099093 Riordan array (1, 3+3x).
1, 0, 3, 0, 3, 9, 0, 0, 18, 27, 0, 0, 9, 81, 81, 0, 0, 0, 81, 324, 243, 0, 0, 0, 27, 486, 1215, 729, 0, 0, 0, 0, 324, 2430, 4374, 2187, 0, 0, 0, 0, 81, 2430, 10935, 15309, 6561, 0, 0, 0, 0, 0, 1215, 14580, 45927, 52488, 19683, 0, 0, 0, 0, 0, 243, 10935, 76545, 183708, 177147, 59049
Offset: 0
Examples
Rows begin: 1; 0, 3; 0, 3, 9; 0, 0, 18, 27; 0, 0, 9, 81, 81; 0, 0, 0, 81, 324, 243; 0, 0, 0, 27, 486, 1215, 729; ...
Crossrefs
Cf. A038221.
Programs
-
Magma
[[Binomial(k,n-k)*3^k: k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Feb 21 2015 /* as the triangle */
-
PARI
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(k, n-k)*3^k, ", ");); print(););} \\ Michel Marcus, Feb 21 2015
Formula
T(n,k) = binomial(k, n-k)*3^k. - corrected by Michel Marcus, Feb 21 2015
Columns have g.f. (3x+3x^3)^k.
T(n,k) = A026729(n,k)*3^k. - Philippe Deléham, Jul 29 2006
Comments