cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106344 Triangle read by rows: T(n,k) = binomial(k,n-k) mod 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1
Offset: 0

Views

Author

Paul Barry, Apr 29 2005

Keywords

Comments

A skew version of Sierpinski’s triangle A047999. - Johannes W. Meijer, Jun 05 2011
Row sums are A002487(n+1). Diagonal sums are A106345. Inverse is A106346.
Triangle formed by reading T triangle mod 2 with T := A026729, A062110, A084938, A099093, A106344, A109466, A110517, A112883, A130167. - Philippe Deléham, Dec 18 2008

Examples

			Triangle begins
  1;
  0, 1;
  0, 1, 1;
  0, 0, 0, 1;
  0, 0, 1, 1, 1;
  0, 0, 0, 1, 0, 1;
		

Crossrefs

Cf. A106345 (diagonal sums), A106346 (inverse).

Programs

  • GAP
    Flat(List([0..15], n-> List([0..n], k-> (Binomial(k,n-k) mod 2) ))); # G. C. Greubel, Feb 07 2020
  • Magma
    [ Binomial(k,n-k) mod 2: k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 07 2020
    
  • Maple
    seq(seq(`mod`(binomial(k, n-k), 2), k = 0..n), n = 0..15); # G. C. Greubel, Feb 07 2020
  • Mathematica
    Table[Mod[Binomial[k, n-k], 2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 18 2017 *)
  • PARI
    T(n,k) = binomial(k,n-k)%2;
    for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 07 2020
    
  • Sage
    [[ mod(binomial(k,n-k), 2) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Feb 07 2020
    

A099094 a(n) = 3*a(n-2) + 3*a(n-3), a(0)=1, a(1)=0, a(2)=3.

Original entry on oeis.org

1, 0, 3, 3, 9, 18, 36, 81, 162, 351, 729, 1539, 3240, 6804, 14337, 30132, 63423, 133407, 280665, 590490, 1242216, 2613465, 5498118, 11567043, 24334749, 51195483, 107705376, 226590696, 476702577, 1002888216, 2109879819, 4438772379
Offset: 0

Views

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Diagonal sums of A099093.
Counts walks (closed) on the graph G(1-vertex; 2-loop, 2-loop, 2-loop, 3-loop, 3-loop, 3-loop). - David Neil McGrath, Jan 16 2015
Number of compositions of n into parts 2 and 3, each of three sorts. - Joerg Arndt, Feb 14 2015

Programs

  • Mathematica
    CoefficientList[Series[1 / (1 - 3 x^2 - 3 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 16 2015 *)
    LinearRecurrence[{0,3,3},{1,0,3},40] (* Harvey P. Dale, Aug 15 2017 *)
  • PARI
    Vec(1/(1-3*x^2-3*x^3) + O(x^50)) \\ Michel Marcus, Jan 17 2015

Formula

G.f.: 1/(1 - 3*x^2 - 3*x^3).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)*3^k.
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n) = (0,3,3,0,0,...) and S(n) = (0,1,0,0,...). (* is convolution operation.) Define S^*0 = I. Then T(n,j) counts n-walks containing (j) loops, on the single vertex graph above, and a(n) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 16 2015

Extensions

Corrected by Philippe Deléham, Dec 18 2008
Showing 1-2 of 2 results.