cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099195 a(n) = (n^2)*( n^6 + 28*n^4 + 154*n^2 + 132 )/315.

Original entry on oeis.org

0, 1, 16, 129, 704, 2945, 10128, 29953, 78592, 187137, 411280, 845185, 1640640, 3032705, 5373200, 9173505, 15158272, 24331777, 38058768, 58161793, 87037120, 127791489, 184402064, 261902081, 366594816, 506298625, 690625936, 931299201, 1242506944, 1641303169, 2148053520
Offset: 0

Views

Author

Jonathan Vos Post, Nov 16 2004

Keywords

References

  • H. S. M. Coxeter, Regular Polytopes, New York: Dover, 1973.

Crossrefs

Similar sequences: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A069039 (m=6), A099193 (m=7), A099196 (m=9), A099197 (m=10).
Cf. A000332.

Programs

  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,1,16,129,704,2945,10128,29953,78592},40] (* Harvey P. Dale, Jan 23 2019 *)
  • PARI
    concat(0, Vec(x*(1+x)^7/(1-x)^9 + O(x^40))) \\ Michel Marcus, Dec 14 2015

Formula

a(n) = (n^2)*( n^6 + 28*n^4 + 154*n^2 + 132 )/315.
G.f.: x*(1+x)^7/(1-x)^9. [R. J. Mathar, Jul 18 2009]
a(n) = 16*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018