cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099780 a(n) = Sum_{k=0..floor(n/3)} C(n-k, 2*k) * 2^k*3^(n-3*k).

Original entry on oeis.org

1, 3, 9, 29, 99, 351, 1273, 4677, 17307, 64295, 239361, 892125, 3327091, 12412143, 46313289, 172824629, 644952459, 2406919671, 8982595153, 33523198797, 125109675747, 466914455615, 1742546049561, 6503265548325, 24270507755131, 90578748694983, 338044453470369
Offset: 0

Views

Author

Paul Barry, Oct 26 2004

Keywords

Comments

In general a(n) = Sum_{k=0..floor(n/3)} C(n-k,2*k) * u^k*v^(n-3*k) has g.f. (1-v*x) / ((1-v*x)^2-u*x^2) and satisfies the recurrence a(n) = 2*u*v*a(n-1) - v^2*a(n-2) + u*a(n-3).

Crossrefs

Programs

  • GAP
    a:=[1,3,9];; for n in [4..30] do a[n]:=6*a[n-1]-9*a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Sep 04 2019
  • Magma
    I:=[1,3,9]; [n le 3 select I[n] else 6*Self(n-1) - 9*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 04 2019
    
  • Maple
    seq(coeff(series((1-3*x)/((1-3*x)^2 -2*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Sep 04 2019
  • Mathematica
    LinearRecurrence[{6,-9,2},{1,3,9},30] (* Harvey P. Dale, Nov 30 2015 *)
  • PARI
    Vec((1-3*x) / ((1-3*x)^2-2*x^3) + O(x^30)) \\ Colin Barker, Feb 05 2017
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-k, 2*k) * 2^k*3^(n-3*k)); \\ Michel Marcus, Feb 05 2017
    
  • Sage
    def A099780_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-3*x)/((1-3*x)^2 -2*x^3)).list()
    A099780_list(30) # G. C. Greubel, Sep 04 2019
    

Formula

G.f.: (1-3*x)/((1-3*x)^2 - 2*x^3).
a(n) = 6*a(n-1) - 9*a(n-2) + 2*a(n-3).
a(n) = A001834(n)/3 + 2^(n+1)/3. - R. J. Mathar, Sep 21 2012
a(n) = (2^(2+n) - (2-sqrt(3))^n*(-1+sqrt(3)) + (1+sqrt(3))*(2+sqrt(3))^n) / 6. - Colin Barker, Feb 05 2017
E.g.f.: (1/3)*exp(2*x)*(2 + cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Sep 04 2019

A099216 a(n)=4a(n-1)-4a(n-2)+2a(n-3).

Original entry on oeis.org

1, 2, 4, 10, 28, 80, 228, 648, 1840, 5224, 14832, 42112, 119568, 339488, 963904, 2736800, 7770560, 22062848, 62642752, 177860736, 504997632, 1433833088, 4071063296, 11558916096, 32819077376, 93182771712, 264572609536
Offset: 0

Views

Author

Paul Barry, Oct 06 2004

Keywords

Comments

Binomial transform of tribonacci numbers A000213.

Crossrefs

Formula

G.f.: (1-2x)/((1-2x)^2-2x^3); a(n)=sum{k=0..floor(n/3), binomial(n-k, 2k)2^k*2^(n-3k)}.
Showing 1-2 of 2 results.