cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099250 Bisection of Motzkin numbers A001006.

Original entry on oeis.org

1, 4, 21, 127, 835, 5798, 41835, 310572, 2356779, 18199284, 142547559, 1129760415, 9043402501, 73007772802, 593742784829, 4859761676391, 40002464776083, 330931069469828, 2750016719520991, 22944749046030949, 192137918101841817, 1614282136160911722
Offset: 0

Views

Author

N. J. A. Sloane, Nov 16 2004

Keywords

Comments

a(n) is the number of grand Motzkin paths from (0,0) to (2n+2,0) that avoid vertices (k,0) for all odd k and end on a down step. - Alexander Burstein, May 11 2021

Crossrefs

Programs

  • Maple
    G:=(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2): GG:=series(G,x=0,60): seq(coeff(GG,x^(2*n-1)),n=1..24);  # Emeric Deutsch
    M := proc(n) option remember; `if`(n<2,1,(3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2)) end: A099250 := n -> M(2*n+1):
    seq(A099250(i),i=0..20); # Peter Luschny, Sep 11 2011
  • Mathematica
    Take[CoefficientList[Series[(1-x-(1-2x-3x^2)^(1/2))/(2x^2), {x,0,60}], x], {2,-1,2}] (* Harvey P. Dale, Sep 11 2011 *)
    Table[Hypergeometric2F1[-1/2-n, -n, 2, 4], {n, 0, 30}] (* Jean-François Alcover, Apr 03 2015 *)
    MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]];
    Table[MotzkinNumber[2n+1], {n, 0, 20}] (* Jean-François Alcover, Oct 27 2021 *)
  • PARI
    my(x='x+O('x^66)); v=Vec((1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2)); vector(#v\2,n,v[2*n]) \\ Joerg Arndt, May 12 2013
    
  • PARI
    {a(n)=polcoeff(1/x*serreverse( x*(1+x)/((1+2*x)^2*(1+x+x^2) +x^2*O(x^n)) ),n)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Oct 03 2014

Formula

a(n) = (2/Pi)*Integral_{x=-1..1} (1+2*x)^(2*n+1)*sqrt(1-x^2). [Peter Luschny, Sep 11 2011]
Recurrence: (n+1)*(2*n+3)*a(n) = (14*n^2+23*n+6)*a(n-1) + 3*(14*n^2-37*n+21)*a(n-2) - 27*(n-2)*(2*n-3)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n+5/2)/(4*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f.: (1/x) * Series_Reversion( x*(1+x) / ( (1+2*x)^2 * (1+x+x^2) ) ). - Paul D. Hanna, Oct 03 2014
From Peter Bala, Apr 20 2024: (Start)
a(n) = Sum_{k = 0..2*n+1} (-1)^(k+1) * binomial(2*n+1, k)*Catalan(k+1).
a(n) = Sum_{k = 0..2*n+1} (-1)^k * binomial(2*n+1, k)*Catalan(k+1)*3^(2*n-k+1).
(4*n - 1)*(2*n + 3)*(n + 1)*a(n) = 2*(4*n + 1)*(10*n^2 + 5*n - 3)*a(n-1) - 9*(4*n + 3)*(2*n - 1)*(n - 1)*a(n-2) with a(0) = 1 and a(1) = 4. (End)

Extensions

More terms from Emeric Deutsch, Nov 17 2004