cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A099281 Decimal expansion of the sine integral at 1.

Original entry on oeis.org

9, 4, 6, 0, 8, 3, 0, 7, 0, 3, 6, 7, 1, 8, 3, 0, 1, 4, 9, 4, 1, 3, 5, 3, 3, 1, 3, 8, 2, 3, 1, 7, 9, 6, 5, 7, 8, 1, 2, 3, 3, 7, 9, 5, 4, 7, 3, 8, 1, 1, 1, 7, 9, 0, 4, 7, 1, 4, 5, 4, 7, 7, 3, 5, 6, 6, 6, 8, 7, 0, 3, 6, 5, 4, 0, 7, 9, 7, 9, 1, 8, 0, 8, 8, 7, 0, 2, 1, 3, 3, 0, 8, 1, 7, 4, 0, 7, 1, 1, 2, 1, 5, 0, 2, 3
Offset: 0

Views

Author

Robert G. Wilson v, Oct 08 2004

Keywords

Examples

			0.946083070367183014941353313823179657812337954738111790471454773...
		

References

  • HP 82480A Math Pac Owner's Manual For the HP-71, Section 11: Numerical Integration, Page 118.

Crossrefs

Programs

Formula

From Amiram Eldar, Aug 21 2020: (Start)
Equals Integral_{x=0..1} sin(x)/x dx.
Equals -Integral_{x=0..1} log(x)*cos(x) dx.
Equals Sum_{k>=0} (-1)^k/((2*k+1)*(2*k+1)!). (End)

A257535 Decimal expansion of the imaginary part of -E_1(i), i being the imaginary unit.

Original entry on oeis.org

6, 2, 4, 7, 1, 3, 2, 5, 6, 4, 2, 7, 7, 1, 3, 6, 0, 4, 2, 8, 9, 9, 6, 8, 3, 7, 7, 8, 1, 6, 5, 7, 1, 7, 8, 4, 2, 8, 6, 2, 4, 6, 7, 4, 4, 9, 4, 9, 4, 4, 1, 1, 2, 0, 0, 1, 6, 0, 1, 7, 5, 2, 2, 5, 8, 7, 2, 2, 1, 1, 6, 6, 6, 0, 2, 3, 0, 6, 5, 8, 1, 2, 2, 5, 3, 1, 5, 2, 7, 9, 5, 8, 9, 3, 1, 7, 8, 2, 2, 7, 7, 6, 0, 5, 0
Offset: 0

Views

Author

Stanislav Sykora, Apr 28 2015

Keywords

Comments

E_1(z) = Integral_{t>=1}(exp(-t*z)/t) is the exponential integral.

Examples

			0.6247132564277136042899683778165717842862467449494411200160175...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/2 - SinIntegral[1], 10, 105][[1]] (* Amiram Eldar, May 24 2023 *)
  • PARI
    a = imag(-eint1(I))

Formula

Equals imag(E_1(-i)).
Equals (Pi/2) - A099281.

A091032 Second column (k=3) of array A090438 ((4,2)-Stirling2) divided by 8.

Original entry on oeis.org

1, 60, 5040, 604800, 99792000, 21794572800, 6102480384000, 2134124568576000, 912338253066240000, 468333636574003200000, 284372184127734743040000, 201645730563302817792000000, 165147853331345007771648000000
Offset: 2

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A002674 (first column of A090438), A091033 (third column), A090438.

Programs

  • Mathematica
    a[n_] := (n - 1)*(2*n)!/4!; Array[a, 13, 2] (* Amiram Eldar, Nov 03 2022 *)
  • PARI
    a(n) = (n-1)*(2*n)!/4!; \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 3)/8 = (n-1)*(2*n)!/4!
E.g.f.: (-3*hypergeom([1/2, 1], [], 4*x) + hypergeom([1, 3/2], [], 4*x) + 2)/(8*3!) (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=2} 1/a(n) = 60 - 24*Gamma - 24*cosh(1) + 24*CoshIntegral(1) - 24*sinh(1).
Sum_{n>=2} (-1)^n/a(n) = -12 + 24*gamma - 24*cos(1) - 24*CosIntegral(1) + 24*SinIntegral(1). (End)
a(n+1) = Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j) (Campbell, Eq. 17). - Peter Bala, Mar 30 2025

A091033 Third column (k=4) of array A090438 ((4,2)-Stirling2).

Original entry on oeis.org

1, 180, 25200, 4233600, 898128000, 239740300800, 79332244992000, 32011868528640000, 15509750302126080000, 8898339094906060800000, 5971815866682429603840000, 4637851802955964809216000000
Offset: 2

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A091032 (second column of A090438 divided by 8), A091034 (fourth column divided by 24), A000384, A090438.

Programs

  • Mathematica
    a[n_] := (n-1)*(2*n-3)*(2*n)!/4!; Array[a, 12, 2] (* Amiram Eldar, Nov 03 2022 *)
  • PARI
    a(n) = (n-1)*(2*n-3)*(2*n)!/4!; \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 4), n>=2.
a(n) = (n-1)*(2*n-3)*(2*n)!/4! = binomial(2*(n-1), 2)*(2*n)!/4! = A000384(n-1)*(2*n)!/4!, n>=2.
E.g.f.: (6*hypergeom([1/2, 1], [], 4*x) - 4*hypergeom([1, 3/2], [], 4*x) + hypergeom([3/2, 2], [], 4*x) -3)/4! (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=2} 1/a(n) = -20 + 24*Gamma - 16*CoshIntegral(1) + 16*sinh(1) + 8*SinhIntegral(1).
Sum_{n>=2} (-1)^n/a(n) = 4 - 24*gamma + 16*cos(1) + 24*CosIntegral(1) - 16*sin(1) + 8*SinIntegral(1). (End)

A091034 Fourth column (k=5) of array A090438 ((4,2)-Stirling2) divided by 24.

Original entry on oeis.org

1, 280, 70560, 19958400, 6659452800, 2644408166400, 1244905998336000, 689322235650048000, 444916954745303040000, 331767548149023866880000, 283424276847308960563200000, 275246422218908346286080000000
Offset: 3

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A091033 (third column of A090438), A091035 (fifth column), A090438.

Programs

  • Mathematica
    a[n_] := (n - 1)*(n - 2)*(2*n - 3)*(2*n)!/(5!*(3!)^2); Array[a, 12, 3] (* Amiram Eldar, Nov 03 2022 *)
  • PARI
    a(n) = (n-1)*(n-2)*(2*n-3)*(2*n)!/(5!*(3!)^2); \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 5)/24, n>=3.
a(n) = (n-1)*(n-2)*(2*n-3)*(2*n)!/(5!*(3!)^2), n>=3.
E.g.f.: (Sum_{p=2..5} (((-1)^(p+1))*binomial(5, p)*hypergeom([(p-1)/2, p/2], [], 4*x)) + 4)/(5!*4!) (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=3} 1/a(n) = 2010 - 4680*Gamma + 1800*cosh(1) + 4680*CoshIntegral(1) - 2520*sinh(1) - 2880*SinhIntegral(1).
Sum_{n>=3} (-1)^(n+1)/a(n) = -2010 - 3960*gamma + 3240*cos(1) + 3960*CosIntegral(1) - 1800*sin(1) + 2880*SinIntegral(1). (End)

A091035 Fifth column (k=6) of array A090438 ((4,2)-Stirling2).

Original entry on oeis.org

1, 840, 352800, 139708800, 59935075200, 29088489830400, 16183777978368000, 10339833534750720000, 7563588230670151680000, 6303583414831453470720000, 5951909813793488171827200000, 6330667711034891964579840000000
Offset: 3

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A091034 (fourth column of A090438 divided by 24), A091036 (sixth column divided by 48), A053134, A090438.

Programs

  • Mathematica
    Table[Binomial[2n-2,4] (2n)!/6!,{n,3,20}] (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    a(n) = binomial(2*n-2, 4)*(2*n)!/6!; \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 6), n>=3.
a(n) = binomial(2*n-2, 4)*(2*n)!/6! = A053134(n-3)*(2*n)!/6!, n>=3.
E.g.f.: (Sum_{p=2..6} (((-1)^p)*binomial(6, p)*hypergeom([(p-1)/2, p/2], [], 4*x)) - 5)/6! (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=3} 1/a(n) = -594 + 1800*Gamma - 1008*cosh(1) - 1800*CoshIntegral(1) + 912*sinh(1) + 1464*SinhIntegral(1).
Sum_{n>=3} (-1)^(n+1)/a(n) = 1554 + 1080*gamma - 1248*cos(1) - 1080*CosIntegral(1) + 240*sin(1) - 1416*SinIntegral(1). (End)

A062779 a(n) = 2*n*(2*n)!.

Original entry on oeis.org

0, 4, 96, 4320, 322560, 36288000, 5748019200, 1220496076800, 334764638208000, 115242726703104000, 48658040163532800000, 24728016011107368960000, 14890761641597746544640000, 10485577989291746525184000000
Offset: 0

Views

Author

Jason Earls, Jul 18 2001

Keywords

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 38, equation 38:6:2 at page 364.

Crossrefs

Programs

  • Mathematica
    a[n_] := 2*n*(2*n)!; Array[a, 14, 0] (* Amiram Eldar, Feb 14 2021 *)
  • PARI
    for(n=0,22,print((2*n)*(2*n)!))

Formula

From Amiram Eldar, Feb 14 2021: (Start)
a(n) = A001563(2*n) = 2*n*A010050(n).
Sum_{n>=1} 1/a(n) = Chi(1) - gamma = A099284 - A001620, where Chi(x) is the hyperbolic cosine integral
Sum_{n>=1} (-1)^(n+1)/a(n) = gamma - Ci(1) = A001620 - A099282, where Ci(x) is the cosine integral. (End)

A246820 Decimal expansion of integral_{0..infinity} x*exp(-x)/(1+x^2) dx.

Original entry on oeis.org

3, 4, 3, 3, 7, 7, 9, 6, 1, 5, 5, 6, 4, 2, 7, 0, 3, 2, 8, 3, 2, 5, 3, 3, 0, 0, 3, 8, 5, 8, 3, 1, 2, 4, 3, 4, 0, 0, 1, 2, 4, 4, 0, 1, 9, 4, 9, 9, 9, 0, 7, 5, 1, 9, 2, 0, 5, 7, 6, 7, 1, 8, 1, 6, 3, 8, 7, 0, 4, 6, 4, 2, 2, 9, 8, 1, 1, 7, 5, 7, 2, 6, 2, 8, 3, 3, 3, 2, 7, 6, 2, 9, 6, 8, 6, 0, 1, 2, 1, 2, 4, 5, 5, 1
Offset: 0

Views

Author

Keywords

Examples

			0.3433779615564270328325330038583124340012440194999075192...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/2)*Sin[1]*(Pi - 2*SinIntegral[1]) - Cos[1]*CosIntegral[1], 10, 104] // First

Formula

(1/2)*sin(1)*(Pi - 2*Si(1)) - cos(1)*Ci(1), where Si is the sine integral function and Ci the cosine integral function.
Also equals -integral_{0..1} log(x)/(1+log(x)^2) dx.
Also equals cot(1)*A224518 + Ci(1)*csc(1).

A257176 Decimal expansion of Integral_{x=0..1} Integral_{y=0..x} sin(x*y) dy dx.

Original entry on oeis.org

1, 1, 9, 9, 0, 5, 8, 7, 1, 0, 0, 0, 2, 8, 2, 3, 6, 2, 9, 7, 1, 9, 3, 2, 9, 4, 3, 0, 9, 6, 6, 2, 5, 8, 3, 0, 5, 2, 2, 2, 9, 0, 6, 5, 1, 6, 7, 7, 0, 9, 5, 8, 5, 2, 0, 0, 2, 2, 2, 4, 3, 4, 6, 2, 2, 4, 3, 6, 8, 6, 9, 8, 3, 7, 6, 3, 0, 4, 3, 0, 9, 0, 2, 0, 0, 4, 9, 4, 4, 0, 0, 9, 7, 2, 1, 1, 8, 7, 7, 4, 5, 4, 8, 4, 1
Offset: 0

Views

Author

Robert G. Wilson v, Apr 17 2015

Keywords

Comments

One of the examples in Mathematica's help file under "Integrate".

Examples

			0.1199058710002823629719329430966258305222906516770958520022243462243686983763...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Integrate[Sin[x y], {x, 0, 1}, {y, 0, x}], 10, 111][[1]]

Formula

Equals (A001620 - A099282)/2.
Showing 1-9 of 9 results.