A274136 a(n) = (n+1)*(2*n+2)!/(n+2).
1, 16, 540, 32256, 3024000, 410572800, 76281004800, 18598035456000, 5762136335155200, 2211729098342400000, 1030334000462807040000, 572721601599913328640000, 374484928188990947328000000, 284562454970932936468070400000
Offset: 0
Keywords
Examples
a(0) = (2*3 - 1*2)/4 = 1. a(1) = (2*3*4*5 - 1*2*3*4)/6 = 16. a(2) = (2*3*4*5*6*7 - 1*2*3*4*5*6)/8 = 540.
Links
- Hong-Chang Wang, Table of n, a(n) for n = 0..30
- Hong-Chang Wang, Definition of the formula B(n,k,a,b)
Programs
-
Mathematica
a[n_] := (Product[i + 2, {i, 0, 2*n + 1}] - Product[-i - 1, {i, 0, 2*n + 1}])/(2*n + 4); Table[a[n], {n, 0, 10}] (* G. C. Greubel, Jun 19 2016 *) Table[((n+1)(2n+2)!)/(n+2),{n,0,30}] (* Harvey P. Dale, Oct 24 2020 *)
-
PARI
a(n) = ((2*n+1)!-(2*n)!)/(2*(n+1)) \\ Felix Fröhlich, Jun 11 2016
-
PARI
a(n) = (prod(i=0, 2*n+1, i+2)-prod(i=0, 2*n+1, -i-1))/(2*n+4) \\ Felix Fröhlich, Jul 05 2016
-
Python
# subroutine def B (n, k, a, b): pa = pb = 1 for i in range(n+1): pa *= (i*k+a) pb *= (-i*k-b) m = n*k+a+b p = pa-pb if m == 0: return "NaN" else: return p/m # main program for j in range(101): print(str(j)+" "+str(B(2*j+1, 1, 2, 1))) # Hong-Chang Wang, Jun 14 2016
Formula
a(n) = B(2*n+1,1,2,1) = (Product_{i=0..2*n+1}(i+2) - Product_{i=0..2*n+1}(-i-1))/(2*n+4), n >= 0.
a(n) = A062779(n)/(2*(n+1)). - Michel Marcus, Jun 11 2016
a(n) ~ sqrt(Pi)*exp(-2*n)*(48*n*(24*n + 13) + 1177)*4^(n-2)*n^(2*n+1/2)/9. - Ilya Gutkovskiy, Jul 07 2016
Comments