cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083553 Product of prime(n+1)-1 and prime(n)-1.

Original entry on oeis.org

2, 8, 24, 60, 120, 192, 288, 396, 616, 840, 1080, 1440, 1680, 1932, 2392, 3016, 3480, 3960, 4620, 5040, 5616, 6396, 7216, 8448, 9600, 10200, 10812, 11448, 12096, 14112, 16380, 17680, 18768, 20424, 22200, 23400, 25272, 26892, 28552, 30616, 32040
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Comments

The conductor of x*prime(n) + y*prime(n+1); that is, for all k >= a(n), there exist nonnegative integers x and y such that k = x*prime(n) + y*prime(n+1). - T. D. Noe, Sep 22 2004

Examples

			n=25: a(25) = (97-1)*(101-1) = 9600.
		

References

  • David Bressoud and Stan Wagon, A Course in Computational Number Theory, Key College Pub., 2000, p. 46.

Crossrefs

Cf. A000040, A006093, A058263, A083538-A083555, A099407 (terms halved), A172042 [= A000010(a(n))], A256617.
One more than A037165.
Column 3 of A379010.

Programs

  • Mathematica
    f[x_] := Prime[x]-1; Table[f[w+1]*f[w], {w, 1, 128}]
  • PARI
    A083553(n) = ((prime(1+n)-1)*(prime(n)-1)); \\ Antti Karttunen, Dec 14 2024

Formula

a(n) = A006093(n+1)*A006093(n) = (prime(n+1)-1)*(prime(n)-1).
a(n) = A037165(n) + 1.
a(n) = 2*A099407(n). - Antti Karttunen, Dec 14 2024

A201498 a(n) = (prime(n) - 1)*(prime(n+1) - 1)/2 + 3.

Original entry on oeis.org

4, 7, 15, 33, 63, 99, 147, 201, 311, 423, 543, 723, 843, 969, 1199, 1511, 1743, 1983, 2313, 2523, 2811, 3201, 3611, 4227, 4803, 5103, 5409, 5727, 6051, 7059, 8193, 8843, 9387, 10215, 11103, 11703, 12639, 13449, 14279, 15311, 16023, 17103, 18243, 18819, 19407
Offset: 1

Views

Author

Zak Seidov, Dec 02 2011

Keywords

Comments

Consider strictly increasing sequence with the rule:
a(n) is the smallest pairwise sum s of all previous terms such that s > a(n-1).
We start with some pair of coprime positive integers b < c, a(1)=b, a(2)=c; from now on, to find a(n) we use the above-mentioned rule. We observe that, for any seeds b,c, after some term, a(n) = a(n-1) + 1.
E.g., for b=7, c=12, we get 7, 12,1 9, 26, 31, 33, 38, 40, 43, 45, 47, 50, 52, 54, 55, 57, 59, 61, 62, 64, 66, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, ...
We stop at the term a(L=36) = 85 after which a(n) = a(n-1) + 1.
In the general case of arbitrary coprime b < c, the length of the sequence is L = 3 + (b-1)(c-1)/2, and a(L) = b*c + 1.
In A201498, we present the dependence of L(n) for the particular case b=prime(n) and c=prime(n+1).

Programs

  • Mathematica
    #/2+3&/@(Times@@@Partition[Prime[Range[50]]-1,2,1])  (* Harvey P. Dale, Jun 01 2015 *)
  • PARI
    p=2;forprime(q=3,1e3,print1((p-1)*(q-1)/2+3", ");p=q) \\ Charles R Greathouse IV, Dec 05 2011

Formula

a(n) = A099407(n) + 3.
Showing 1-2 of 2 results.