A099439
Numbers k such that A000295(k) = 2^k-k-1 is prime.
Original entry on oeis.org
4, 10, 14, 16, 26, 50, 56, 70, 116, 2072, 6250, 13670, 14216, 14626, 396128
Offset: 1
a(1) = 4 because 2^4 - 4 - 1 = 11 is prime.
A099440
Primes of the form A000295(k) = 2^k - k - 1.
Original entry on oeis.org
11, 1013, 16369, 65519, 67108837, 1125899906842573, 72057594037927879, 1180591620717411303353, 83076749736557242056487941267521419
Offset: 1
a(2) = 1013 because A000295(A099439(2)) = 2^10 - 10 - 1 is prime.
A099442
Semiprimes of the form 2^k-k-1.
Original entry on oeis.org
4, 26, 57, 247, 502, 4083, 1073741793, 4294967263, 8589934558, 70368744177617, 4503599627370443, 4611686018427387841, 18889465931478580854709, 75557863725914323419059, 77371252455336267181195177, 316912650057057350374175801245
Offset: 1
a(4) = 247 because 247 = 13*19 = 2^8-8-1 = 2^A099441(4)-A099441(4)-1.
-
Select[Table[2^n - n - 1, {n, 300}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 21 2012 *)
-
from sympy.ntheory.factor_ import primeomega
def ok(n): return primeomega(2**n-n-1) == 2
print([2**m-m-1 for m in range(2, 100) if ok(m)]) # Michael S. Branicky, Apr 26 2021
Showing 1-3 of 3 results.
Comments