cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A099440 Primes of the form A000295(k) = 2^k - k - 1.

Original entry on oeis.org

11, 1013, 16369, 65519, 67108837, 1125899906842573, 72057594037927879, 1180591620717411303353, 83076749736557242056487941267521419
Offset: 1

Views

Author

Hugo Pfoertner, Oct 18 2004

Keywords

Comments

The next term a(10) = 2^2072-2073 has 624 decimal digits.
a(11) has 1882 decimal digits. - Vincenzo Librandi, Jul 18 2012

Examples

			a(2) = 1013 because A000295(A099439(2)) = 2^10 - 10 - 1 is prime.
		

Crossrefs

Cf. A000295 2^n-n-1 (column 2 of the Eulerian numbers), A099439 2^n-n-1 is prime, A099441 2^n-n-1 is a semiprime, A099442 semiprimes in A000295.

Programs

  • Magma
    [ a: n in [1..200] | IsPrime(a) where a is 2^n-n-1 ]; // Vincenzo Librandi, Jul 18 2012
  • Mathematica
    Select[Table[2^n-n-1,{n,0,7000}],PrimeQ] (* Vincenzo Librandi, Jul 18 2012 *)

A099442 Semiprimes of the form 2^k-k-1.

Original entry on oeis.org

4, 26, 57, 247, 502, 4083, 1073741793, 4294967263, 8589934558, 70368744177617, 4503599627370443, 4611686018427387841, 18889465931478580854709, 75557863725914323419059, 77371252455336267181195177, 316912650057057350374175801245
Offset: 1

Views

Author

Hugo Pfoertner, Oct 18 2004

Keywords

Comments

Semiprimes in A000295.

Examples

			a(4) = 247 because 247 = 13*19 = 2^8-8-1 = 2^A099441(4)-A099441(4)-1.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[2^n - n - 1, {n, 300}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 21 2012 *)
  • Python
    from sympy.ntheory.factor_ import primeomega
    def ok(n): return primeomega(2**n-n-1) == 2
    print([2**m-m-1 for m in range(2, 100) if ok(m)]) # Michael S. Branicky, Apr 26 2021

A099441 Numbers n such that A000295(n) = 2^n-n-1 is a semiprime.

Original entry on oeis.org

3, 5, 6, 8, 9, 12, 30, 32, 33, 46, 52, 62, 74, 76, 86, 98, 130, 134, 154, 228, 230, 242, 256, 266, 346, 352, 382, 412, 428, 474, 488, 634, 650, 662, 688, 704, 722, 772, 896, 986, 1108, 1222, 1246, 1326
Offset: 1

Views

Author

Hugo Pfoertner, Oct 18 2004

Keywords

Comments

A candidate for the next term is a(45) = 1736. 2^1736-1737 is composite with 523 decimal digits and unknown factorization. - Tyler Busby, Jan 05 2025

Examples

			a(3) = 6 because 2^6-6-1 = 57 = 3*19 is a semiprime.
		

Crossrefs

Cf. A000295 (2^n-n-1 (column 2 of the Eulerian numbers)), A099439 (2^n-n-1 is prime), A099440 (primes in A000295), A099442 (semiprimes in A000295).

Extensions

More terms from Hugo Pfoertner, Aug 13 2007
a(24) corrected by Hugo Pfoertner, Sep 07 2017
a(32)-a(44) from Tyler Busby, Jan 05 2025

A063791 Numbers k such that 2^(k+1) - k - 2 is prime.

Original entry on oeis.org

3, 9, 13, 15, 25, 49, 55, 69, 115, 2071, 6249, 13669, 14215, 14625, 396127
Offset: 1

Views

Author

Jason Earls, Aug 17 2001

Keywords

References

  • Dean Hickerson, personal communication.

Crossrefs

Cf. A099439.

Programs

  • PARI
    for(n=1,5000, if(isprime(2^(n+1)-n-2),print(n)))

Formula

a(n) = A099439(n) - 1. - Hugo Pfoertner, Jul 24 2019

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
a(15) from Karsten Bonath, Jun 07 2018

A296031 Numbers k such that 2^(k-1) - k is prime.

Original entry on oeis.org

5, 11, 15, 17, 27, 51, 57, 71, 117, 2073, 6251, 13671, 14217, 14627, 396128
Offset: 1

Views

Author

Thomas Gajdek, Dec 03 2017

Keywords

Comments

a(15) > 200000. - Giovanni Resta, May 13 2018

Examples

			5 is in the sequence, because 2^4 - 5 = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6500], PrimeQ[2^(# - 1) - #] &] (* Michael De Vlieger, Apr 21 2018 *)
  • PARI
    forstep(n=1, 10^6, 2, if(ispseudoprime(2^(n-1)-n),print1(n,", "))); \\ Joerg Arndt, Apr 15 2018

Formula

a(n) = A099439(n) + 1 = A063791(n) + 2.

Extensions

Edited by Joerg Arndt, Apr 15 2018
a(15) from Michael S. Branicky, Apr 20 2025 using A099439
Showing 1-5 of 5 results.