cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099576 Row sums of triangle A099575.

Original entry on oeis.org

1, 2, 6, 12, 35, 72, 210, 440, 1287, 2730, 8008, 17136, 50388, 108528, 319770, 692208, 2042975, 4440150, 13123110, 28614300, 84672315, 185122080, 548354040, 1201610592, 3562467300, 7821594872, 23206929840, 51037462560, 151532656696
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+Floor(k/2)+1, Floor(k/2)+1)*(1+Floor(k/2))/(n+1): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Jul 24 2022
    
  • Maple
    seq(op([(1+n/(n+1))*binomial(3*n+1,n),2*binomial(3*n+3,n)]),n=0..20);
  • Mathematica
    a[n_] := Sum[Binomial[n + j, j], {k, 0, n}, {j, 0, k/2}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 06 2018 *)
    a[n_] := Binomial[2*n+2, n]*Hypergeometric2F1[-n, n+1, -2*n-2, -1]; Flatten[Table[a[n], {n, 0, 28}]] (* Detlef Meya, Dec 25 2023 *)
  • PARI
    a(n) = sum(k=0, n, sum(j=0, floor(k/2), binomial(n+j, j))); \\ Andrew Howroyd, Feb 13 2018
    
  • SageMath
    [sum( binomial(n+(k//2)+1, (k//2)+1)*(1+(k//2))/(n+1) for k in (0..n) ) for n in (0..40)] # G. C. Greubel, Jul 24 2022

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} binomial(n+j, j).
Conjecture: 4*n*(n-1)*(3*n+2)*(n+2)*a(n) - 36*(n-1)*(n+1)*a(n-1) - 3*n*(3*n+5)*(3*n-1)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Nov 28 2014
From Robert Israel, May 08 2018: (Start)
a(2*n) = (1+n/(n+1))*binomial(3*n+1,n).
a(2*n+1) = 2*binomial(3*n+3,n).
The conjecture follows from this. (End)
a(n) = (1/(n+1))*Sum_{k=0..n} binomial(n + floor(k/2) + 1, floor(k/2) + 1)*(1 + floor(k/2)). - G. C. Greubel, Jul 24 2022
a(n) = binomial(2*n+2, n)*hypergeom([-n, n+1], [-2*n-2], -1). - Detlef Meya, Dec 25 2023