A099576 Row sums of triangle A099575.
1, 2, 6, 12, 35, 72, 210, 440, 1287, 2730, 8008, 17136, 50388, 108528, 319770, 692208, 2042975, 4440150, 13123110, 28614300, 84672315, 185122080, 548354040, 1201610592, 3562467300, 7821594872, 23206929840, 51037462560, 151532656696
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Programs
-
Magma
[(&+[Binomial(n+Floor(k/2)+1, Floor(k/2)+1)*(1+Floor(k/2))/(n+1): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Jul 24 2022
-
Maple
seq(op([(1+n/(n+1))*binomial(3*n+1,n),2*binomial(3*n+3,n)]),n=0..20);
-
Mathematica
a[n_] := Sum[Binomial[n + j, j], {k, 0, n}, {j, 0, k/2}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 06 2018 *) a[n_] := Binomial[2*n+2, n]*Hypergeometric2F1[-n, n+1, -2*n-2, -1]; Flatten[Table[a[n], {n, 0, 28}]] (* Detlef Meya, Dec 25 2023 *)
-
PARI
a(n) = sum(k=0, n, sum(j=0, floor(k/2), binomial(n+j, j))); \\ Andrew Howroyd, Feb 13 2018
-
SageMath
[sum( binomial(n+(k//2)+1, (k//2)+1)*(1+(k//2))/(n+1) for k in (0..n) ) for n in (0..40)] # G. C. Greubel, Jul 24 2022
Formula
a(n) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} binomial(n+j, j).
Conjecture: 4*n*(n-1)*(3*n+2)*(n+2)*a(n) - 36*(n-1)*(n+1)*a(n-1) - 3*n*(3*n+5)*(3*n-1)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Nov 28 2014
From Robert Israel, May 08 2018: (Start)
a(2*n) = (1+n/(n+1))*binomial(3*n+1,n).
a(2*n+1) = 2*binomial(3*n+3,n).
The conjecture follows from this. (End)
a(n) = (1/(n+1))*Sum_{k=0..n} binomial(n + floor(k/2) + 1, floor(k/2) + 1)*(1 + floor(k/2)). - G. C. Greubel, Jul 24 2022
a(n) = binomial(2*n+2, n)*hypergeom([-n, n+1], [-2*n-2], -1). - Detlef Meya, Dec 25 2023