A099627 Triangle read by rows: T(n,k) = 2^n + 2^k - 1 with n >= k >= 0.
1, 2, 3, 4, 5, 7, 8, 9, 11, 15, 16, 17, 19, 23, 31, 32, 33, 35, 39, 47, 63, 64, 65, 67, 71, 79, 95, 127, 128, 129, 131, 135, 143, 159, 191, 255, 256, 257, 259, 263, 271, 287, 319, 383, 511, 512, 513, 515, 519, 527, 543, 575, 639, 767, 1023, 1024, 1025, 1027, 1031, 1039
Offset: 0
Examples
Triangle starts: In binary: k = 0 1 2 3 4 5 n 0 1 1 1 2 3 10 11 2 4 5 7 100 101 111 3 8 9 11 15 1000 1001 1011 1111 4 16 17 19 23 31 10000 10001 10011 10111 11111 5 32 33 35 39 47 63 100000 100001 100011 100111 101111 111111 E.g. T(5,3) = 2^5 + 2^3-1 = 32 + 7 = 39 (100111 in binary).
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
Haskell
a099627 n k = a099627_tabl !! n !! k a099627_row n = a099627_tabl !! n a099627_tabl = iterate (\xs@(x:_) -> (2 * x) : map ((+ 1) . (* 2)) xs) [1] -- Reinhard Zumkeller, Dec 19 2012
-
Mathematica
Table[2^n+2^k -1,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 27 2016 *)
Formula
As sequence, a(n) = A048645(n+2) - 1.
G.f.: (1 - x - x^2*y)/((1 - x)*(1 - 2*x)*(1 - x*y)*(1 - 2*x*y)). - Stefano Spezia, Aug 11 2024
Comments