cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099627 Triangle read by rows: T(n,k) = 2^n + 2^k - 1 with n >= k >= 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 15, 16, 17, 19, 23, 31, 32, 33, 35, 39, 47, 63, 64, 65, 67, 71, 79, 95, 127, 128, 129, 131, 135, 143, 159, 191, 255, 256, 257, 259, 263, 271, 287, 319, 383, 511, 512, 513, 515, 519, 527, 543, 575, 639, 767, 1023, 1024, 1025, 1027, 1031, 1039
Offset: 0

Views

Author

Henry Bottomley, Oct 25 2004

Keywords

Comments

Positive integers m where m-th Catalan number A000108(m) = C(2m,m)/(m+1) is not divisible by 4, i.e. where A048881(m) is 0 or 1.
Numbers in A000225 or A099628.
From Charles L. Hohn, Jul 25 2024: (Start)
Integers >=1 whose binary digit counts (number of 0s and number of 1s) are distinct from those of any smaller number.
Binary analog of A179239 for n>=1.
All integers whose binary expression conforms to regex /^10*1*$/, shown in base 10 in ascending numeric order. (End)
Together with 0 all fixed points of A073137. - Alois P. Heinz, Jan 30 2025

Examples

			Triangle starts:                  In binary:
   k = 0  1  2  3  4  5
n
0      1                               1
1      2  3                           10     11
2      4  5  7                       100    101    111
3      8  9 11 15                   1000   1001   1011   1111
4     16 17 19 23 31               10000  10001  10011  10111  11111
5     32 33 35 39 47 63           100000 100001 100011 100111 101111 111111
E.g. T(5,3) = 2^5 + 2^3-1 = 32 + 7 = 39 (100111 in binary).
		

Crossrefs

A053221 (row sums), A000079 (left diagonal), A000225 (right diagonal).
A048645 (see formula).
Partial sums of A232089.

Programs

  • Haskell
    a099627 n k = a099627_tabl !! n !! k
    a099627_row n = a099627_tabl !! n
    a099627_tabl = iterate (\xs@(x:_) -> (2 * x) : map ((+ 1) . (* 2)) xs) [1]
    -- Reinhard Zumkeller, Dec 19 2012
  • Mathematica
    Table[2^n+2^k -1,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 27 2016 *)

Formula

As sequence, a(n) = A048645(n+2) - 1.
G.f.: (1 - x - x^2*y)/((1 - x)*(1 - 2*x)*(1 - x*y)*(1 - 2*x*y)). - Stefano Spezia, Aug 11 2024