cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099770 Expansion of 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6)).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 7, 11, 11, 16, 16, 23, 23, 31, 31, 41, 41, 53, 53, 67, 67, 83, 83, 102, 102, 123, 123, 147, 147, 174, 174, 204, 204, 237, 237, 274, 274, 314, 314, 358, 358, 406, 406, 458, 458, 514, 514, 575, 575, 640, 640, 710, 710, 785, 785, 865, 865, 950, 950, 1041, 1041
Offset: 0

Views

Author

G. Nebe (nebe(AT)math.rwth-aachen.de), Nov 10 2004

Keywords

Comments

Molien series for symmetrized weight enumerators of Hermitian self-dual codes over the Galois ring GR(4,2).
Number of partitions of n into parts 1, 2, 4, and 6. - Joerg Arndt, May 05 2014
a(n) is equal to the number of partitions of degree at most n+6 of length 3 with even entries. - John M. Campbell, Jan 20 2016

Examples

			From _John M. Campbell_, Jan 20 2016: (Start)
Letting n=6, a(n) = 7 is equal to the number of partitions of n into parts 1, 2, 4, and 6, as illustrated below, and a(n) is equal to the number of partitions of degree at most n+6 of length 3 with even entries, as illustrated below. The arrows below illustrate a natural bijection between the set of partitions of the former form and the set of partitions of the latter form.
(2, 2, 2) <-> (1, 1, 1, 1, 1, 1)
(4, 2, 2) <-> (2, 1, 1, 1, 1)
(6, 2, 2) <-> (4, 1, 1)
(4, 4, 2) <-> (2, 2, 1, 1)
(8, 2, 2) <-> (6)
(6, 4, 2) <-> (4, 2)
(4, 4, 4) <-> (2, 2, 2)
(End)
		

Crossrefs

Programs

  • GAP
    a:=[1,1,2,2,4,4,7,7,11,11,16,16,23];; for n in [14..65] do a[n]:= a[n-1]+a[n-2]-a[n-3]+a[n-4]-a[n-5]-a[n-8]+a[n-9]-a[n-10]+a[n-11]+a[n-12] -a[n-13]; od; a; # G. C. Greubel, Sep 04 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 04 2019
    
  • Maple
    seq(coeff(series(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6)), x, n+1), x, n), n = 0 .. 65); # G. C. Greubel, Sep 04 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6)), {x, 0, 65}], x] (* G. C. Greubel, Sep 04 2019 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6)) + O(x^80)) \\ Michel Marcus, Jan 21 2016
    
  • Sage
    def A099770_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6))).list()
    A099770_list(65) # G. C. Greubel, Sep 04 2019
    

Formula

a(n) ~ 1/288*n^3. - Ralf Stephan, Apr 29 2014
a(n) = (2*n^3 +39*n^2 +241*n +372 +3*(n^2 +13*n +40) * (-1)^n -84*(-1)^((2*n +3 +(-1)^n)/4) -192*floor(((2*n +9 +(-1)^n-6*(-1)^((2*n+3+(-1)^n)/4))/24)))/576. - Luce ETIENNE, May 05 2014
a(n) = A000601(A004526(n)). - Hoang Xuan Thanh, Jun 21 2025