A099843 A transform of the Fibonacci numbers.
1, -5, 21, -89, 377, -1597, 6765, -28657, 121393, -514229, 2178309, -9227465, 39088169, -165580141, 701408733, -2971215073, 12586269025, -53316291173, 225851433717, -956722026041, 4052739537881, -17167680177565, 72723460248141, -308061521170129, 1304969544928657
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (-4,1).
Crossrefs
Programs
-
Magma
[(-1)^n*Fibonacci(3*n+2): n in [0..40]]; // G. C. Greubel, Apr 20 2023
-
Maple
a:= n-> (<<0|1>, <1|-4>>^n.<<1, -5>>)[1,1]: seq(a(n), n=0..24); # Alois P. Heinz, Apr 21 2023
-
Mathematica
CoefficientList[Series[(1-x)/(1+4*x-x^2), {x,0,30}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *) LinearRecurrence[{-4,1},{1,-5},30] (* Harvey P. Dale, Aug 13 2015 *)
-
SageMath
[(-1)^n*fibonacci(3*n+2) for n in range(41)] # G. C. Greubel, Apr 20 2023
Formula
G.f.: (1-x)/(1+4*x-x^2).
a(n) = (sqrt(5)-2)^n * (1/2 - 3*sqrt(5)/10) + (-sqrt(5)-2)^n * (1/2 + 3*sqrt(5)/10).
a(n) = (-1)^n*Fibonacci(3*n+2).
a(n) = -4*a(n-1) + a(n-2), a(0)=1, a(1)=-5. - Philippe Deléham, Nov 03 2008
a(n) = (-1)^n*A015448(n+1). - R. J. Mathar, May 07 2019
Comments