cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099868 a(n) = 5*a(n-1) - a(n-2), a(0) = 3, a(1) = 25.

Original entry on oeis.org

3, 25, 122, 585, 2803, 13430, 64347, 308305, 1477178, 7077585, 33910747, 162476150, 778470003, 3729873865, 17870899322, 85624622745, 410252214403, 1965636449270, 9417930031947, 45124013710465, 216202138520378, 1035886678891425, 4963231255936747
Offset: 0

Views

Author

Creighton Dement, Oct 28 2004

Keywords

Crossrefs

Programs

  • GAP
    a:=[3,25];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Nov 20 2018
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3 +10*x)/(1-5*x+x^2))); // G. C. Greubel, Nov 20 2018
    
  • Maple
    a[0]:=3: a[1]:=25: for n from 2 to 30 do a[n]:=5*a[n-1]-a[n-2] od: seq(a[n],n=0..25);
  • Mathematica
    LinearRecurrence[{5,-1}, {3,25}, 30] (* G. C. Greubel, Nov 20 2018 *)
  • PARI
    Vec((3+10*x) / (1-5*x+x^2) + O(x^30)) \\ Colin Barker, Mar 28 2017
    
  • Sage
    s=((3+10*x)/(1-5*x+x^2)).series(x,30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 20 2018
    

Formula

|2*A099867(n) + a(n) - A003501(n+1)| = 20*A004254(n)
G.f.: (3 + 10*x) / (1 - 5*x + x^2). - Emeric Deutsch, Dec 03 2004
a(n) = (2^(-1-n)*((5-sqrt(21))^n*(-35+3*sqrt(21)) + (5+sqrt(21))^n*(35+3*sqrt(21)))) / sqrt(21). - Colin Barker, Mar 28 2017
Showing 1-1 of 1 results.