cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099867 a(n) = 5*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=9.

Original entry on oeis.org

1, 9, 44, 211, 1011, 4844, 23209, 111201, 532796, 2552779, 12231099, 58602716, 280782481, 1345309689, 6445765964, 30883520131, 147971834691, 708975653324, 3396906431929, 16275556506321, 77980876099676, 373628823992059, 1790163243860619, 8577187395311036
Offset: 0

Views

Author

Creighton Dement, Oct 28 2004

Keywords

Comments

From Klaus Purath, Mar 07 2023: (Start)
For any two terms (a(n), a(n+1)) = (x, y), x^2 - 5*x*y + y^2 = 37 = A082111(4). This is valid in general for all recursive sequences (t) with constant coefficients (5,-1) and t(0) = 1: x^2 - 5*x*y + y^2 = A082111(t(1)-5). This includes and interprets the Feb 04 2014 comment in A004253 by Colin Barker.
By analogy to all this, for three consecutive terms (x, y, z) of any sequence (t) of the form (5,-1) with t(0) = 1: y^2 - x*z = A082111(t(1)-5). (End)

Crossrefs

Programs

  • Magma
    I:=[1,9]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 30 2015
    
  • Mathematica
    a[0] = 1; a[1] = 9; a[n_] := a[n] = 5 a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 21}] (* Robert G. Wilson v, Dec 14 2004 *)
    LinearRecurrence[{5, -1}, {1, 9}, 30] (* or *) CoefficientList[Series[(1 + 4 x)/(1 - 5 x + x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jun 26 2011 *)
  • PARI
    Vec((1+4*x) / (1-5*x+x^2) + O(x^30)) \\ Colin Barker, Mar 31 2017

Formula

|2*a(n) + A099868(n) - A003501(n+1)| = 20*A004254(n).
From R. J. Mathar, Sep 11 2008: (Start)
G.f.: (1+4*x) / (1-5*x+x^2).
a(n) = A004254(n+1) + 4*A004254(n).
(End)
a(n) = 2^(-1-n)*((5-sqrt(21))^n*(-13+sqrt(21)) + (5+sqrt(21))^n*(13+sqrt(21))) / sqrt(21). - Colin Barker, Mar 31 2017
Showing 1-1 of 1 results.