cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099903 Sum of all matrix elements of n X n matrix M(i,j) = i^3+j^3, (i,j = 1..n). a(n) = n^3*(n+1)^2/2.

Original entry on oeis.org

2, 36, 216, 800, 2250, 5292, 10976, 20736, 36450, 60500, 95832, 146016, 215306, 308700, 432000, 591872, 795906, 1052676, 1371800, 1764000, 2241162, 2816396, 3504096, 4320000, 5281250, 6406452, 7715736, 9230816, 10975050, 12973500
Offset: 1

Views

Author

Alexander Adamchuk, Oct 29 2004

Keywords

Comments

Numerator of a(n)/n! is A099904(n).

Examples

			a(3) = (1/2) * (2^3)*(2+1)^2 = 36.
  (or)
a(3) = (1^3+1^3) + (1^3+2^3) + (2^3+1^3) + (2^3+2^3) = 36.
		

Crossrefs

Programs

Formula

a(n) = Sum_{i=1..n, j=1..n} (i^3 + j^3).
a(n) = 2*n*Sum_{k=1..n} k^3. - Gary Detlefs, Oct 26 2011
a(n) = (n^5 + 2*n^4 + n^3)/2. - Charles R Greathouse IV, Oct 27 2011
G.f.: 2*x*(1+12*x+15*x^2+2*x^3)/(1-x)^6. - Colin Barker, May 04 2012
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*zeta(3) - Pi^2 + 8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/2 + 12*log(2) - Pi^2/6 - 8. (End)