A163102
a(n) = n^2*(n+1)^2/2.
Original entry on oeis.org
0, 2, 18, 72, 200, 450, 882, 1568, 2592, 4050, 6050, 8712, 12168, 16562, 22050, 28800, 36992, 46818, 58482, 72200, 88200, 106722, 128018, 152352, 180000, 211250, 246402, 285768, 329672, 378450, 432450, 492032, 557568, 629442, 708050, 793800, 887112, 988418
Offset: 0
- Seth Chaiken, Christopher R. H. Hanusa, and Thomas Zaslavsky, A q-queens problem, in preparation. - Thomas Zaslavsky, Jun 26 2010
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Seth Chaiken, Christopher R. H. Hanusa, and Thomas Zaslavsky, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016-2020.
- A. Umar, Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations, J. Int. Seq., Vol. 14 (2011), Article 11.7.5.
- Eric Weisstein's World of Mathematics, Rook Complement Graph.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
A163274
a(n) = n^4*(n+1)^2/2.
Original entry on oeis.org
0, 2, 72, 648, 3200, 11250, 31752, 76832, 165888, 328050, 605000, 1054152, 1752192, 2798978, 4321800, 6480000, 9469952, 13530402, 18948168, 26064200, 35280000, 47064402, 61960712, 80594208, 103680000, 132031250, 166567752, 208324872
Offset: 0
-
Table[(n^4 (n+1)^2)/2,{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,2,72,648,3200,11250,31752},30] (* Harvey P. Dale, May 07 2012 *)
-
a(n)=n^4*(n+1)^2/2 \\ Charles R Greathouse IV, Oct 07 2015
A163275
a(n) = n^5*(n+1)^2/2.
Original entry on oeis.org
0, 2, 144, 1944, 12800, 56250, 190512, 537824, 1327104, 2952450, 6050000, 11595672, 21026304, 36386714, 60505200, 97200000, 151519232, 230016834, 341067024, 495219800, 705600000, 988352442, 1363135664, 1853666784
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
A163275 := proc(n) n^5*(n+1)^2/2 ; end proc: seq(A163275(n),n=0..60) ; # R. J. Mathar, Feb 05 2010
-
Table[(1/2)*n^5*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{8,-28,56, -70,56,-28,8,-1}, {0,2,144,1944,12800,56250,190512,537824}, 50] (* G. C. Greubel, Dec 12 2016 *)
-
concat([0], Vec(2*x*(1+64*x+424*x^2+584*x^3+179*x^4+8*x^5)/(x-1)^8 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
A163276
a(n) = n^6*(n+1)^2/2.
Original entry on oeis.org
0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832, 26572050, 60500000, 127552392, 252315648, 473027282, 847072800, 1458000000, 2424307712, 3910286178, 6139206432, 9409176200, 14112000000, 20755401282, 29988984608
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
[n^6*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
-
seq((1/2)*n^6*(n+1)^2, n = 0 .. 25); # Emeric Deutsch, Aug 01 2009
-
Table[(1/2)*n^6*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832}, 50] (* G. C. Greubel, Dec 12 2016 *)
-
concat([0], Vec(2*x*(1 + 135*x +1656*x^2 +4456*x^3 +3231*x^4 +585*x^5 +16*x^6)/(1-x)^9 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
A163277
a(n) = n^7*(n+1)^2/2.
Original entry on oeis.org
0, 2, 576, 17496, 204800, 1406250, 6858432, 26353376, 84934656, 239148450, 605000000, 1403076312, 3027787776, 6149354666, 11859019200, 21870000000, 38788923392, 66474865026, 110505715776, 178774347800, 282240000000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
[n^7*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
-
A163277 := proc(n) n^7*(n+1)^2/2 ; end proc: seq(A163277(n),n=0..60) ; \\ R. J. Mathar, Feb 05 2010
-
Table[(1/2)*n^7*(n + 1)^2, {n,0,50}] (* G. C. Greubel, Dec 12 2016 *)
-
concat([0], Vec(2*x*(1 +278*x +5913*x^2 +27760*x^3 +38435*x^4 +16434*x^5 +1867*x^6 +32*x^7)/(x-1)^10 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
A163283
Triangle read by rows in which row n lists n+1 terms, starting with n^3 and ending with n^4, such that the difference between successive terms is equal to n^3 - n^2.
Original entry on oeis.org
0, 1, 1, 8, 12, 16, 27, 45, 63, 81, 64, 112, 160, 208, 256, 125, 225, 325, 425, 525, 625, 216, 396, 576, 756, 936, 1116, 1296, 343, 637, 931, 1225, 1519, 1813, 2107, 2401, 512, 960, 1408, 1856, 2304, 2752, 3200, 3648, 4096, 729, 1377, 2025, 2673, 3321, 3969
Offset: 0
Triangle begins:
0;
1, 1;
8, 12, 16;
27, 45, 63, 81;
64, 112, 160, 208, 256;
125, 225, 325, 425, 525, 625;
216, 396, 576, 756, 936, 1116, 1296;
343, 637, 931, 1225, 1519, 1813, 2107, 2401;
512, 960, 1408, 1856, 2304, 2752, 3200, 3648, 4096;
729, 1377, 2025, 2673, 3321, 3969, 4617, 5265, 5913, 6561;
1000, 1900, 2800, 3700, 4600, 5500, 6400, 7300, 8200, 9100, 10000;
...
A019584
a(n) = n^2*(n-1)^3/4.
Original entry on oeis.org
0, 0, 1, 18, 108, 400, 1125, 2646, 5488, 10368, 18225, 30250, 47916, 73008, 107653, 154350, 216000, 295936, 397953, 526338, 685900, 882000, 1120581, 1408198, 1752048, 2160000, 2640625, 3203226, 3857868, 4615408, 5487525, 6486750, 7626496, 8921088, 10385793
Offset: 0
A099904
Numerator of sum of all matrix elements of N X N matrix M(i,j) = i^3+j^3, (i,j = 1..n) divided by n!.
Original entry on oeis.org
2, 18, 36, 100, 75, 147, 98, 18, 45, 605, 121, 169, 1183, 7, 1, 289, 289, 361, 361, 1, 11, 5819, 529, 1, 13, 13, 1, 841, 841, 961, 961, 1, 17, 17, 1, 1369, 26011, 19, 1, 1681, 1681, 1849, 1849, 1, 23, 50807, 2209, 1, 1, 1, 1, 2809, 2809, 1, 1, 1, 29, 100949, 3481, 3721
Offset: 1
A099903(n)/n! begins 2, 18, 36, 100/3, 75/4, 147/20, 98/45, 18/35, 45/448, ... So a(6) = 147.
-
Table[ Numerator[ Sum[(i^3 + j^3), {i, n}, {j, n}]/n! ], {n, 60}]
Showing 1-8 of 8 results.
Comments